ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:16KB ,
资源ID:2555677      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2555677.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(优秀教师版椭圆几种题型.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

优秀教师版椭圆几种题型.doc

1、高考椭圆几种题型 ― 引言 在高考之中占有比较重要的地位,并且占的分数也多。分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。所以我们对知识必须系统的掌握。对各种题型,基本的解题方法也要有一定的了解。 二 椭圆的知识 (一)、定义 1 平面内与与定点F1、F2的距离之和等于定长2a(2a>|F1F2|)的点的轨迹叫做椭圆,其中F1、F2称为椭圆的焦点,|F1F2|称为焦距。其复数形式的方程为|Z-Z1|+| Z-Z2|=2a(2a>|Z1-Z2|) 2一动点到一个定点F的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F称为椭圆的焦点

2、l称为椭圆的准线。 (二)、方程 1中心在原点,焦点在x轴上: 2中心在原点,焦点在y轴上: 3 参数方程: 4 一般方程: (三)、性质 1 顶点:或 2 对称性:关于,轴均对称,关于原点中心对称。 3 离心率: 4 准线 5 焦半径:设为上一点,F1、F2为左、右焦点,则,;设为上一点,F1、F2为下、上焦点,则,。 三 椭圆题型 (一)、利用定义解题 关于线段长最值的问题一般两个方法:一种是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值,或用均值不等式来求最值。 例(1):点P为为椭圆上一点,F1、F2是椭圆的两个焦点,试求:取得最值时的点坐

3、标。 解:(1)设,则。由椭圆第二定义知:。 ∴。当时, 取最大值,此时点P(0,±b);当时,取最小值b2,此时点P(±a,0)。 (二)、直线与椭圆相交问题 (1) 常用分析一元二次议程解的情况,仅有△还不够,且用数形结合的思想。 (2) 弦的中点,弦长等,利用根与系数的关系式,但△>0这一制约条件不同意。 例(1) 已知直线过椭圆的一个焦点,斜率为2,与椭圆相交于M、N两点,求弦的长。 解:由得。 方法一:由弦长公式 方法二: (三)、“点差法”解题。“设而不求”的思想。 当涉及至平行法的中点轨迹,过定点弦的中点轨迹,过定点且被定点平分的弦所在直线方程,

4、用“点差法”来求解。 步骤:1.设A(x1,y1) B(x2,y2)分别代入椭圆方程; 2.设为AB的中点。两式相减, 3.得出 注:一般的,对椭圆上弦及中点,,有 例:已知椭圆: (1) 求斜率为2的平行弦的中点轨迹方程 解:设弦的两端点分别为,的中点为,则,两式相减并整理可得 ① 将代入式①,得所求的轨迹方程为(在椭圆内部分) (四)、轨迹问题 这一问题难,但是解决法非常多,有如下几种。 1.直接法:根据条件,建立坐标系,设动点(x,y),直接列出动点所应满足的方程。 2.代入法:一个是动点Q(x0,y0)在已知曲线F(x,y)=0,上运动,而动点P(x

5、y)与Q点满足某种关系,要求P点的轨迹。其关键是列出P、Q两点的关系式 3.定义法:通过对轨迹点的分析,发现与某个圆锥曲线的定义相符,则通过这个定义求出方程。 4.参数法:在x,y间的方程F(x,y)=0难以直接求得时,往往用(t为参数)来反映x,y之间的关系。 常用的参数有斜率k与角等。 例:的一边的的顶点是B(0,6)和C(0,-6),另两边斜率的乘积是,求顶点A的轨迹方程: 解:设,由题设得。化简得 (五) 典型例题 1.已知椭圆的左焦点为F,O为坐标原点。 (I)求过点O、F,并且与椭圆的左准线相切的圆的方程; (II)设过点F的直线交椭圆于A、B两点,并且线段

6、AB的 中点在直线上,求直线AB的方程。(06年福建) 解(1) ∵a2=2,b2=1,∴c=1,F(-1,0),l:x=-2. ∵圆过点O、F.∴圆心M在直线x=- 设M(-),则圆半径r=|(-)-(-2)|=. 由|OM|=r,得解得t=±, ∴所求圆的方程为(x+)2+(y±) 2=. (2)设直线AB的方程为y=k(x+1)(k≠0), 代入+y2=1,整理得(1+2k2)x2+4k2x+2k2-2=0. ∵直线AB过椭圆的左焦点F, ∴方程有两个不等实根. 记A(x1,y1),B(x2,y2),AB中点N(x0,y0), 则x1+x1=-x0= AB垂直平分线NG的方程为 令y=0,得 ∵∴点G横坐标的取值范围为()。 3 / 3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服