ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:63.50KB ,
资源ID:2554429      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2554429.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(课时达标检测(十四)变化率与导数、导数计算.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

课时达标检测(十四)变化率与导数、导数计算.doc

1、课时达标检测(十四) 变化率与导数、导数的计算 [练基础小题——强化运算能力] 1.函数f(x)=(x+2a)(x-a)2的导数为(  ) A.2(x2-a2) B.2(x2+a2) C.3(x2-a2) D.3(x2+a2) 解析:选C ∵f(x)=(x+2a)(x-a)2=x3-3a2x+2a3, ∴f′(x)=3(x2-a2). 2.曲线y=sin x+ex在点(0,1)处的切线方程是(  ) A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析:选C ∵y=sin x+ex, ∴y′=cos x+ex,

2、∴y′=cos 0+e0=2, ∴曲线y=sin x+ex在点(0,1)处的切线方程为y-1=2(x-0),即2x-y+1=0. 3.(2016·安庆二模)给出定义:设f′(x)是函数y=f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=3x+4sin x-cos x的拐点是M(x0,f(x0)),则点M(  ) A.在直线y=-3x上 B.在直线y=3x上 C.在直线y=-4x上 D.在直线y=4x上 解析:选B f′(x)=3+4cos x+sin x,f″(x

3、)=-4sin x+cos x,由题可知f″(x0)=0,即4sin x0-cos x0=0,所以f(x0)=3x0,故M(x0,f(x0))在直线y=3x上.故选B. 4.(2016·贵阳一模)曲线y=xex在点(1,e)处的切线与直线ax+by+c=0垂直,则的值为(  ) A.- B.- C. D. 解析:选D y′=ex+xex,则y′|x=1=2e.∵曲线在点(1,e)处的切线与直线ax+by+c=0垂直,∴-=-,∴=,故选D. 5.已知直线y=-x+1是函数f(x)=-ex图象的切线,则实数a=________. 解析:设切点为(x0,y0).f ′(x)=-e

4、x,则f ′(x0)=-·ex0=-1,∴ex0=a,又-·ex0=-x0+1,∴x0=2,∴a=e2. 答案:e2 [练常考题点——检验高考能力] 一、选择题 1.(2017·惠州模拟)已知函数f(x)=cos x,则f(π)+f′=(  ) A.- B.- C.- D.- 解析:选C 由题可知,f(π)=-,f′(x)=-cos x+(-sin x),则f(π)+f′=-+×(-1)=-. 2.设曲线y=在点处的切线与直线x-ay+1=0平行,则实数a等于(  ) A.-1 B. C.-2 D.2 解析:选A ∵y′=,∴y′x

5、==-1,由条件知=-1,∴a=-1. 3.(2017·上饶模拟)若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2距离的最小值为(  ) A.1 B. C. D. 解析:选B 由题可得,y′=2x-.因为y=x2-ln x的定义域为(0,+∞),所以由2x-=1,得x=1,则P点坐标为(1,1),所以曲线在点P处的切线方程为x-y=0,所以两平行线间的距离为d==,即点P到直线y=x-2距离的最小值为. 4.(2016·南昌二中模拟)设点P是曲线y=x3-x+上的任意一点,P点处切线倾斜角α的取值范围为(  ) A.∪ B.

6、C.∪ D. 解析:选C 因为y′=3x2-≥-,故切线斜率k≥-,所以切线倾斜角α的取值范围是∪. 5.(2017·重庆诊断)已知函数f(x)=+sin x,其导函数为f′(x),则f(2 017)+f(-2 017)+f′(2 017)-f′(-2 017)的值为(  ) A.0 B.2 C.2 017 D.-2 017 解析:选B ∵f(x)=+sin x,∴f′(x)=-+cos x,f(x)+f(-x)=+sin x++sin(-x)=2,f′(x)-f′(-x)=-+cos x+-cos(-x)=0,∴f(2 017)+f(-2 017)+

7、f′(2 017)-f′(-2 017)=2. 6.已知f(x)=ln x,g(x)=x2+mx+(m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为(  ) A.-1 B.-3 C.-4 D.-2 解析:选D ∵f′(x)=,∴直线l的斜率为k=f′(1)=1,又f(1)=0,∴切线l的方程为y=x-1.g′(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=x+mx0+,m<0,于是解得m=-2. 二、填空题 7.已知函数f(x)在R上可导,且f

8、x)=x2+2x·f′(2),则函数f(x)的解析式为________. 解析:由题意得f′(x)=2x+2f′(2),则f′(2)=4+2f′(2),所以f′(2)=-4,所以f(x)=x2-8x. 答案:f(x)=x2-8x 8.若直线l与幂函数y=xn的图象相切于点A(2,8),则直线l的方程为________. 解析:由题意知,A(2,8)在y=xn上,∴2n=8,∴n=3,∴y′=3x2,直线l的斜率k=3×22=12,又直线l过点(2,8).∴y-8=12(x-2),即直线l的方程为12x-y-16=0. 答案:12x-y-16=0 9.若曲线f(x)=ax3+ln

9、x存在垂直于y轴的切线,则实数a的取值范围是________. 解析:由题意,可知f′(x)=3ax2+,又存在垂直于y轴的切线,所以3ax2+=0,即a=-(x>0),故a∈(-∞,0). 答案:(-∞,0) 10.已知f′(x),g′(x)分别是二次函数f(x)和三次函数g(x)的导函数,且它们在同一平面直角坐标系内的图象如图所示. (1)若f(1)=1,则f(-1)=________; (2)设函数h(x)=f(x)-g(x),则h(-1),h(0),h(1)的大小关系为________.(用“<”连接) 解析:(1)依题意,f′(x)=x,g′(x)=x2, 设f(x)=

10、ax2+bx+c(a≠0), g(x)=dx3+ex2+mx+n(d≠0), 则f′(x)=2ax+b=x,g′(x)=3dx2+2ex+m=x2, 故a=,b=0,d=,e=m=0,f(x)=x2+c, g(x)=x3+n,由f(1)=1得c=, 则f(x)=x2+,故f(-1)=1. (2)h(x)=f(x)-g(x)=x2-x3+c-n, 则有h(-1)=+c-n,h(0)=c-n,h(1)=+c-n, 故h(0)

11、线C. (1)求过曲线C上任意一点切线斜率的取值范围; (2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围. 解:(1)由题意得f′(x)=x2-4x+3, 则f′(x)=(x-2)2-1≥-1, 即过曲线C上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C的其中一条切线的斜率为k, 则由(2)中条件并结合(1)中结论可知, 解得-1≤k<0或k≥1, 故由-1≤x2-4x+3<0或x2-4x+3≥1, 得x∈(-∞,2-]∪(1,3)∪[2+,+∞). 12.设函数y=x2-2x+2的图象为C1,函数y=-x2+ax+b的图象为C2,已知过C1与C2的一个交点的两切线互相垂直,求a+b的值. 解:对于C1:y=x2-2x+2,有y′=2x-2, 对于C2:y=-x2+ax+b,有y′=-2x+a, 设C1与C2的一个交点为(x0,y0), 由题意知过交点(x0,y0)的两条切线互相垂直. ∴(2x0-2)(-2x0+a)=-1, 即4x-2(a+2)x0+2a-1=0,① 又点(x0,y0)在C1与C2上, 故有 即2x-(a+2)x0+2-b=0.② 由①②消去x0,可得a+b=.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服