ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:116.50KB ,
资源ID:2553301      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2553301.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(23.2.1中心对称优秀教案.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

23.2.1中心对称优秀教案.doc

1、23.2.1中心对称 一、 教学内容 中心对称 二、 教材分析 三、 学情分析 学生在学习了旋转的基础上学习中心对称,在作图方面已经有了一定的基础,中心对称是一种特殊的旋转,对于性质的得出难度不大。 四、 教学目标 ⑴. 知识技能 ①了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题 ②通过具体实例认识两个图形关于某一点中心对称的本质:就是一个图形绕一点旋转180°而成。 ③理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用 ⑵.过程与方法 在发现、探究的过程

2、中完成对中心对称变换从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力 ⑶. 情感态度与价值观 利用图形探索中心对称的性质,让学生体验数学与生活是紧密联系的,体会到生活中的对称美,发展学生的审美能力,增强对图形的欣赏意识。 五、 教学重难点 重点: ①利用中心对称、对称中心、关于中心对称点的概念解决一些问题 ②中心对称的两条基本性质及其运用 难点:中心对称的性质及利用以上性质进行作图 六、 教学方法和手段 利用多媒体的形式展示,通过学生自主动脑思考得出结论。 七、 学法指导 讲授指导 八、 教具准备 多媒体、三角板 九、

3、教学过程 一、创设情境,引入新课 观察: 如图1把其中一个图案绕点O旋转180°,你有什么发现? 图1 ②如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现? 图2 老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△OCD重合. 归纳:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点。 二、师生合作,探

4、求新知 [探究]如图,旋转三角板,画关于点O对称的两个三角形; 第一步,画出△ABC; 第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C'; 第三步,移开三角板。 这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系? [发现]我们可以发现:(1)点O是线段AA'的中点;(2)△ABC≌△A'B'C'。 上述发现可以证明如下. (1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段

5、A A'上,且OA=O A',即点O是线段A A'的中点。 同样的,点O也是线段BB'和CC'的中点 (2)在△AOB与△A'OB'中, OA=OA',OB=OB',∠AOB=∠A'OB', ∴△AOB≌△A'OB'. ∴AB=A'B'. 同理BC=B'C',AC=A'C'. ∴△ABC≌△A'B'C'. 三、理解新知,典例解析 [活动一] 师生合作,归纳出中心对称的性质: (1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分; (2) 关于中心对称的两个图形是全等图形. [活动二] 中心对称与轴对称进行类比 轴对称

6、 中心对称 有一条对称轴——直线 有一个对称中心——点 图形沿对称轴对折(翻转180度)后重合 图形绕对称中心旋转 180度后重合 对称点的连线被对称轴垂直平分 对称点连线经过对称中心且 被对称中心平分 例1.(1)如教材图28.2-4,选择点O为对称中心,画出点A关于点O的对称点A’; (2)如教材图28.2

7、-5,选择点O为对称中心,画出与△ABC关于点O对称的△A’B’C’。 问:1、一个点绕对称中心旋转180º,得到的是一个平角,这表示什么? 2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的? 3、确定一个三角形需要几个点?作一个三角形关于某点成中心对称的三角形,需要作几个点的对称点呢? 十、 课堂小结 本节课你学到了什么知识?从中得到了什么启发? 本节课应掌握: 1.中心对称及对称中心的概念 2.中心对称的两条基本性质: (1)关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分; (2)关于中心对称的两个图形是全等图形 十一、 作业布置 教科书第21页习题28.2第1题 十二、 板书设计 23.2.1中心对称 1.中心对称及对称中心的概念 例题 练习 2.中心对称的两条基本性质: (1)关于中心对称的两个图形,对应点所连线都经过对称中心, 而且被对称中心所平分; (2)关于中心对称的两个图形是全等图形. 十三、 教学反思: 5 / 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服