ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:709.04KB ,
资源ID:2538929      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2538929.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023届广东省广州市顺德区广州第一中学高一数学第一学期期末预测试题含解析.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023届广东省广州市顺德区广州第一中学高一数学第一学期期末预测试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试

2、卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1已知,则的值为( )A.-4B.C.D.42在中,若,则的形状为( )A.等边三角形B.直角三角形C.钝角三角形D.不含角的等腰三角形3已知函数的单调区间是,那么函数在区间上()A.当时,有最小值无最大值B.当时,无最小值有最大值C.当时,有最小值无最大值D.当时,无最小值也无最大值4直线l通过两直线7x5y240和xy0的交点,且点(5,1)到直线l的距离为 ,则直线l的方程是()A.3xy40B.3xy40C.3xy40D.x3y405若向量,则下列结论正确的是A.

3、B.C.D.6函数的图像的一个对称中心是A.B.C.D.7函数,设,则有A.B.C.D.8设,则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9下列关于函数,的单调性的叙述,正确的是()A.在上是增函数,在上是减函数B.在和上是增函数,在上是减函数C.在上是增函数,在上是减函数D.在上是增函数,在和上是减函数10设集合,则A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11已知平面向量,则的值是_12在中,边上的中垂线分别交于点若,则_13函数,函数有_个零点,若函数有三个不同的零点,则实数的取值范围是_.14定义:如果函数在定

4、义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是_15若直线与互相垂直,则点到轴的距离为_16已知是第四象限角,则_三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17已知角的终边经过点,且为第二象限角(1)求、的值;(2)若,求的值18已知定义域为的函数是奇函数.(1)求的值;(2)用函数单调性的定义证明在上是减函数.19已知函数.(1)当时,用定义法证明函数在上是减函数;(2)已知二次函数满足,若不等式恒成立,求的取值范围.20如图,函数(,)的图象与y轴交于点,最小正周期是(1)求函数的

5、解析式;(2)已知点,点P是函数图象上一点,点是线段PA中点,且,求的值21如图,某地一天从513时的温度变化近似满足(1)求这一天513时的最大温差;(2)写出这段曲线的函数解析式参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题 ,解得.故选A.2、B【解析】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论【详解】解:由题意可得sin(AB)1+2cos(B+C)sin(A+C),sin(AB)12cosAsinB,sinAcosBcosAsinB12cosAsinB,sinAcosB+co

6、sAsinB1,sin(A+B)1,A+B90,ABC是直角三角形故选:B【点睛】本题考查差角的余弦公式,和角的正弦公式,考查学生的计算能力,属于基础题3、D【解析】依题意不等式的解集为(1,+),即可得到且,即,再根据二次函数的性质计算在区间(-1,2)上的单调性及取值范围,即可得到函数的最值情况【详解】因为函数的单调区间是,即不等式的解集为(1,+),所以且,即,所以 ,当时,在上满足,故此时为增函数,既无最大值也无最小值,由此A,B错误;当时,在上满足,此时为减函数,既无最大值也无最小值,故C错误,D正确,故选:D.4、C【解析】交点坐标为,设直线方程为,即,则,解得,所以直线方程为,即

7、,故选C点睛:首先利用点斜式设出直线,由距离公式求出斜率,解得直线方程求直线的题型,基本方法是利用点斜式求直线方程,本题通过距离公式求斜率,写出直线方程5、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行6、C【解析】令,得,所以函数的图像的对称中心是,然后赋值即可【详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【点睛】本题主要考查正切函数的对称性,属基础题7、D【解析】1,0,01,bc1,又在x(-,1)上是减函数,f(c)f(b)0,f(c)f(b)f(a) .点睛:在比较幂和对数值的大小时,一般化为同底数的幂(

8、利用指数函数性质)或同底数对数(利用对数函数性质),有时也可能化为同指数的幂(利用幂函数性质)比较大小,在不能这样转化时,可借助于中间值比较,如0或1等把它们与中间值比较后可得出它们的大小8、A【解析】由与互相推出的情况结合选项判断出答案【详解】,由可以推出,而不能推出则“”是“”的充分而不必要条件故选:A9、D【解析】根据正弦函数的单调性即可求解【详解】解:因为的单调递增区间为,单调递减区间为,又,所以函数在,上是增函数,在,和,上是减函数,故选:D10、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.二、填空题:本大题共6小题,每小题5分,共3

9、0分。11、【解析】根据向量垂直向量数量积等于,解得,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:12、4【解析】设,则,又,即,故答案为.13、 .1 .【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1 (2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.14、#,#【解析】根据题意,方程,

10、即在内有实数根,若函数在内有零点首先满足,解得,或对称轴为对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),对称轴:时,(1),因此此时函数在内一定有零点满足条件时,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,15、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转

11、化能力和计算求解能力.16、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,则,所以,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由三角函数的定义和为第二象限角,求得,即点,再利用三角函数的定义,即可求解;(2)利用三角函数的诱导公式和三角函数的基本关系式化简,代入即可求解.【详解】(1)由三角函数的定义可知,解得,因为为第二象限角,即点,则,由三角函数的定义,可得.(2)由(1)知和, 可得=.【点睛】本题主要考查了三角函数的定义,以及三角函数的诱导公式的化简

12、、求值问题,其中解答中熟记三角函数的定义,熟练应用三角函数的诱导公式,准确计算是解答的关键你,着重考查了推理与运算能力,属于基础题.18、(1)(2)详见解析【解析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【详解】解:(1)解法一:因为函数是定义在上的奇函数,所以,即,整理得,所以,所以.解法二:因为函数是定义在上的奇函数,所以,即,解得.当时,.因为,所以当时,函数是定义域为的奇函数.(2)由(1)得.对于任意的,且,则.因为,所以,则,而,所以,即.所以函数在上是减函数.【点睛

13、】已知函数奇偶性求参数值的方法有:(1)利用定义(偶函数)或(奇函数)求解.(2)利用性质:如果为奇函数,且在处有意义,则有;(3)结合定义利用特殊值法,求出参数值.定义法证明单调性:(1)取值;(2)作差(作商);(3)变形;(4)定号(与1比较);(5)下结论.19、(1)证明见解析;(2)【解析】(1)在上为减函数运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(2)设,由题意可得,的方程,解得,可得,由参数分离和二次函数的最值求法,可得所求范围【详解】解:(1)在上为减函数证明:设,由,可得,即,即有,所以在上为减函数;(2)设,则,由,可得,则,解得,即有,不等式恒

14、成立,即为,即对恒成立,由,当时,取得最小值,可得即的取值范围是20、(1); (2),或.【解析】(1)根据余弦型函数的最小正周期公式,结合代入法进行求解即可;(2)根据中点坐标公式,结合余弦函数的性质进行求解即可.【小问1详解】因为函数的最小正周期是,所以有,即,因为函数的图象与y轴交于点,所以,因为,所以,即;【小问2详解】设,即,因为点是线段PA的中点,所以有,代入,得,因为,所以,因此有,或,解得:,或.21、(1)6摄氏度(2),【解析】(1)根据图形即可得出答案;(2)根据可得函数的最值,从而求得,图像为函数的半个周期,可求得,再利用待定系数法可求得,即可得解.【小问1详解】解:由图知,这段时间的最大温差是摄氏度;【小问2详解】解:由图可以看出,从513时的图象是函数的半个周期的图象,所以,因为,则,将,代入,得,所以,可取,所以解析式为,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服