ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:680.04KB ,
资源ID:2538877      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2538877.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(浙江省温州市2022年数学高一上期末联考模拟试题含解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

浙江省温州市2022年数学高一上期末联考模拟试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12小题,共60分)1若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形B.锐角三角形C.直角三角形D.无法确定2一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A.B.C.D.3已知,且点在线段的延长线上,则点的坐标为()A.B.C.D.4对于函数的图象,关于直线对称;关于点对称;可看作是把

2、的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个B.2个C.3个D.4个5如图是一个体积为10的空间几何体的三视图,则图中的值为()A2B.3C.4D.56已知,且,则A.2B.1C.0D.-17设,则的值为( )A.0B.1C.2D.38若的外接圆的圆心为O,半径为4,则在方向上的投影为()A.4B.C.D.19已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.abcB.bcaC.cabD.acb10若,则( )A.B.C.D.11函数的零点个数为( )A.1B.2C.3D.412函数的零点所在的

3、区间是A.B.C.D.二、填空题(本大题共4小题,共20分)13已知,则的最大值为_.14函数的值域是_15若,则_.16经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是_三、解答题(本大题共6小题,共70分)17(1)已知,试用、表示;(2)化简求值:18已知函数(且).(1)当时, ,求的取值范围;(2)若在上最小值大于1,求的取值范围.19已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值20已知函数f(x)2asinb的定义域为,函数最大值为1,最小值为5,求a和b的值21已知函数()是偶函数.(1)求的值;(2)设,判断并证明函数在上的

4、单调性;(3)令若对恒成立,求实数的取值范围.22已知,求的值.参考答案一、选择题(本大题共12小题,共60分)1、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:,是三角形的一个内角,则,为钝角,这个三角形为钝角三角形.故选:A2、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D故选D3、C【解析】设,根据题意得出,由建立方程组求解即可.【详解】设,因为,所以即故选:C【点睛】本题主要考查了由向量共线求参数,属于基础题.4、B【解析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有

5、点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【点睛】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破

6、较难的命题.5、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:321=6,棱锥的体积为:32x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.6、D【解析】,故选D7、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能

7、力,是基础题.8、C【解析】过作的垂线,垂足为,分析条件可得,作出图分析结合投影的几何意义可进而可求得投影.【详解】过作的垂线,垂足为,则M为BC的中点,连接AM,由,可得,所以三点共线,即有 ,且.所以.在方向上的投影为,故选:C.9、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D10、C【解析】由题可得,从而可求出,即得.【详解】所以,又因为,所以,即,所以,又因为,所以,故选:C11、B【解析】函数的定义域为,且,即函数为偶函数,当时,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函

8、数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点12、B【解析】,函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得这

9、个也就是方程的根由此可判断根所在区间.二、填空题(本大题共4小题,共20分)13、【解析】由题知,进而令,再结合基本不等式求解即可.【详解】解:,当时取等,所以,故令,则,所以,当时,等号成立.所以的最大值为故答案为:14、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),故函数的值域为,故答案为:.15、#【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.16、或【解析】设所求直线方程为 ,将点代入上式可得或.考点:直线方程三、解答题(本大题共6小题,共70分)17、(1)

10、;(2)【解析】(1)利用换底公式及对数运算公式化简;(2)利用指数运算公式化简求值.【详解】(1);(2).18、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解;(2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案.【详解】(1)当时, ,得.(2)在定义域内单调递减,当时,函数在上单调递减, ,得.当时,函数在上单调递增, ,不成立.综上: .【点睛】本题主要考查了指数函数的图象与性质的应用问题,其中解答中由指数函数的解析式转化为相应的不等式,以及根据指数函数的单调性分类讨论求解是解答的关键,着重考查了推理与运算能力.19、(1)最小正周期

11、对称中心为:,.(2)【解析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【详解】(1),的最小正周期令,解得,的对称中心为:,.(2)当时,故当时,函数取得最小值,即,取得最小值为,【点睛】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.20、a126,b2312,或a126,b1912.【解析】0x,2x.sin1.若a0,则,解得,若a0,则,解得,综上可知,a126,b2312,或a126,b1912.21、(1)(2)单调递增函数.见解析(3)【解析】(1)由题意得,推出得,从而有,解出即可;(2)先求出函数的解析式,再

12、根据单调性的性质即可得判断函数的单调性,再利用作差法证明即可;(3),令,换元法得在上恒成立,利用分离变量法求出函数在上的最值,从而可求出的取值范围【详解】解:(1)由是偶函数得,可得,即,得,解得:;(2)由(1)可知,,,和在上单调递增,为在上的单调递增函数,证明:任取,那么,则,,即那么,为在上的单调递增函数;(3)由(2)可知,那么,令,则,,,转化为在上恒成立,即在上恒成立,而函数和在上单调递增,则函数在上单调递增,故:实数的取值范围为【点睛】本题主要考查对数型函数的奇偶性与单调性的综合,考查恒成立问题,属于中档题22、【解析】首先根据正切两角和公式得到,再利用诱导公式和二倍角公式化简得到,再分子、分母同除以求解即可.【详解】因为,解得.所以.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服