ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:656.54KB ,
资源ID:2537704      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2537704.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(内蒙古翁牛特旗乌丹第一中学2022-2023学年高一数学第一学期期末质量检测模拟试题含解析.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

内蒙古翁牛特旗乌丹第一中学2022-2023学年高一数学第一学期期末质量检测模拟试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1若直线与圆相切,则的值是()A.-2或12B.2或-12C.-2或-12D.2或122若,则下列不等式中,正确的是( )A.B.C.D.3已知M,N都是实数,则“”是“”的()条件A.充分不必要B.必要不充分C.充要D.

2、既不充分也不必要4已知函数(,)的图象(部分)如图所示,则的解析式是A.B.C.D.5已知是定义在上的偶函数,那么的最大值是( )A.0B.C.D.16已知x0,y0,且x+2y2,则xy()A.有最大值为1B.有最小值为1C.有最大值为D.有最小值为7函数的零点个数为( )A.B.C.D.8已知函数在内是减函数,则的取值范围是A.B.C.D.9设函数的最小正周期为,且在内恰有3个零点,则的取值范围是( )A.B.C.D.10下列说法不正确的是()A.奇函数的图象关于原点对称,但不一定过原点B.偶函数的图象关于y轴对称,但不一定和y轴相交C.若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,

3、则D.若奇函数的图象与y轴相交,交点不一定是原点二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11函数的单调增区间是_12已知,则_13设,依次是方程,的根,并且,则,的大小关系是_14已知实数x,y满足条件,则的最大值_.15在中,且在上,则线段的长为_三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16(1)已知,则;(2)已知角的终边上有一点的坐标是,其中,求17已知直线,直线经过点,且(1)求直线的方程;(2)记与轴相交于点,与轴相交于点,与相交于点,求的面积18已知定义域为的函数是奇函数.(1) 求实数的值;(2) 判断并用定义证明该函数在定义

4、域上的单调性;(3) 若方程在内有解,求实数的取值范围19已知全集,若集合,.(1)若,求,;(2)若,求实数的取值范围.20已知函数,.(1)解不等式:;(2)若函数在区间上存在零点,求实数的取值范围;(3)若函数的反函数为,且,其中为奇函数,为偶函数,试比较与的大小.21函数的一段图象如下图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位,得到的图象.求直线与函数的图象在内所有交点的横坐标之和.参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】解方程即得解.【详解】解:由题得圆的圆心坐标为半径为1,

5、所以或.故选:C2、C【解析】利用不等式的基本性质判断.【详解】由,得,即,故A错误;则,则,即,故B错误;则,所以,故C正确;则,所以,故D错误; 故选:C3、B【解析】用定义法进行判断.【详解】充分性:取,满足.但是无意义,所以充分性不满足;必要性:当成立时,则有,所以.所以必要性满足.故选:B4、C【解析】根据图象可知,利用正弦型函数可求得;根据最大值和最小值可确定,利用及可求得,从而得到函数解析式.【详解】由图象可知,的最小正周期:又又,且,即,本题正确选项:【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确由最大值和最小值确定;由周期确定;通常通过最值点来进行求解,属于

6、常考题型.5、C【解析】f(x)ax2bx是定义在a1,2a上偶函数,a12a0,a.又f(x)f(x),b0,所以.故选C.6、C【解析】利用基本不等式的性质进行求解即可【详解】,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件7、B【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.8、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.9、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,

7、得.当时,又,则因为在上的零点为,且在内恰有3个零点,所以或解得.故选:D10、D【解析】对于AB,举例判断,对于CD根据函数奇偶性和对称性的关系分析判断即可【详解】对于A,是奇函数,其图象关于原点对称,但不过原点,所以A正确,对于B,是偶函数,其图象关于轴对称,但与轴不相交,所以B正确,对于C,若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则两个交点关于轴对称,所以,所以C正确,对于D,若奇函数与y轴有交点,则,故,所以函数必过原点,所以D错误,故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先求出函数定义域,再换元,利用复合函数单调性的求法求解【

8、详解】由,得,所以函数的定义域为,令,则,因为在上递增,在上递减,而在上为增函数,所以在上递增,在上递减,故答案为:12、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:13、【解析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【详解】因为,所以,因为,所以,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【点睛】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题14、【解析】利用几何意义,设,则k可看作圆上的动点

9、P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,,.故答案为:15、1【解析】,且在上,线段为的角平分线,以A为原点,如图建立平面直角坐标系,则,D故答案为1三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)当时,;当时,【解析】(1)分子分母同时除以,然后代入计算即可;(2)利用三角函数的定义求出和,再分和讨论计算即可.【详解】(1)分子分母同时除以得原式.(2)由三角函数的定义可知 ,当时,所

10、以;当时,所以所以当时,原式;当时,原式17、(1);(2)【解析】(1)根据两条直线垂直的斜率关系可得直线的斜率,代入求得截距,即可求得直线的方程.(2)根据题意分别求得的坐标,可得的长,由的纵坐标即可求得的面积【详解】(1)由题意,则两条直线的斜率之积为即直线的斜率为因为,所以可设将代入上式,解得即(2)在直线中,令,得,即在直线:中,令,得,即解方程组,得 ,即则底边的长为,边上的高为故【点睛】本题考查了直线与直线垂直的斜率关系,直线与轴交点坐标,直线的交点坐标求法,属于基础题.18、(1)1;(2)见解析;(3)-1,3).【解析】(1)根据解得,再利用奇偶性的定义验证,即可求得实数的

11、值;(2)先对分离常数后,判断出为递减函数,再利用单调性的定义作差证明即可;(3)先用函数的奇函数性质,再用减函数性质变形,然后分离参数可得,在内有解,令,只要.【详解】(1)依题意得,故,此时,对任意均有,所以是奇函数,所以.(2)在上减函数,证明如下:任取,则所以该函数在定义域上是减函数(3)由函数为奇函数知,又函数单调递减函数,从而,即方程在内有解,令,只要, 且,当时,原方程在内有解【点睛】本题主要考查函数的奇偶性与单调性以及函数值域的应用,属于难题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,

12、偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.19、(1),;(2).【解析】(1)求出集合,直接进行补集和并集运算即可求解;(2)由题意可得:,列出满足的不等关系即可求解.【详解】(1)(2),20、(1)或;(2);(3)【解析】(1)根据二次不等式和对数不等式的解法求解即可得到所求;(2)由可得,故所求范围即为函数在区间上的值域,根据换元法求出函数的值域即可;(3)根据题意可求出,进而得到和,于是可得大小关系【详解】(1)由,得或,即或,解得,所以原不等式的解集为(2)令,得令,由,得,则,其中令,则在上单调递增,所以,即,所以.故实数的取值范围为(3)由题意得,即,因此,

13、因为为奇函数,为偶函数,所以,解得,所以,因此另法:,所以【点睛】(1)本题考查函数知识的综合运用,解题时要注意函数、方程、不等式间的关系的应用,根据条件及要求合理求解(2)解决函数零点问题时,可转化为方程解得问题处理,也可利用分离变量的方法求解,转化为求具体函数值域的问题,解题时注意转化的合理性和等价性21、(1)(2)【解析】(1)由图象可计算得;(2)由题意可求,进而可以求出在给定区间内与已知直线的交点的横坐标,问题得解.【小问1详解】由题图知,于是,将的图象向左平移个单位长度,得的图象.于是所以,【小问2详解】由题意得故由,得因为,所以所以或或或,所以,在给定区间内,所有交点的横坐标之和为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服