ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:420.06KB ,
资源ID:2522243      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2522243.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(六年级奥数练习(阴影面积)1.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

六年级奥数练习(阴影面积)1.doc

1、六年级奥数练习题(圆和组合图形) 1、算出圆内正方形的面积为多少22.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是多少平方厘米.3.一个扇形圆心角,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是多少?4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米). 5.三角形ABC是直角三角形,阴影部分的面积比阴影部分的面积小28平方厘米. AB长40厘米, BC长 厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半

2、径OA=OB=6厘米., AC垂直OB于C,那么图中阴影部分的面积是 平方厘米.9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.121520 10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.12.如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O,半径r=9厘米,那么阴影部分的面积是多少平方厘米?21213、如图,求阴影部分的面积 .14、大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.15、在一个半径是4.5厘米的圆中挖去两

3、个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(取3.14,结果精确到1平方厘米)16、如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.17.下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是多少平方米?17、已知:ABCD是正方形, ED=DA=AF=2厘米,阴影部分的面积是 .EDCBAAGF18、如图:阴影部分的面积是多少?四分之一大圆的半径为r.(计算时圆周率取) 19、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.20.如图图在下面两个连在一起的轮轴,已知小轮的半径

4、是3分米,当这个小轮转3圈时,大轮正好转一圈,21.3只蜜蜂分别沿着阴影部分的边缘飞1次,那只蜜蜂飞过的路线最长?(3个正方形的边长都为4m)23.将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长24.求阴影部分的面积25.一个圆环外直径是内直径的二分之三倍,圆环面积150cm,求外圆的面积26.一个长方形的面积是20平方厘米,如果在这个长方形里画一个最大的半圆形,这个半圆形是多少平方厘米?因为这个半圆的直径是长方形的长,半径是宽,说明长方形的长是宽的2倍。设宽是X。则长是2xX*2X=20X*x=10,所以半圆的面积=派*(x*x)/奥数练习题1、一块长方形木板,沿着它的长度不

5、同的两条边各截去4厘米,截掉的总面积为192平方厘米。,现在这块木板的周长是多少厘米?2、一个等腰直角三角形,最长的边12厘米,这个三角形的面积是多少平方厘米?3、求四边形ABCD的面积。(单位:厘米)1、 已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。2、 有一个梯形,它的上底是 5厘米,下底7厘米,如果只是把上底增加3厘米,那么面积就增加4. 5平方厘米。求原来梯形的面积。3、 下图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中间长方形的面积。4、 如下图。已知道大正方形的边长是12厘米,求中间最小正

6、方形的面积。5、 下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点。求AEF的面积。9、求下图长方形ABCD的面积。(单位:厘米10、下图中两个正方形边长分别是6厘米和4厘米,阴影部分的面积。 11、 下图中两个完全一样的三角形重叠在一起求阴影部分的面积。12、下图中,甲三角形的面积比乙三角形的面积大多少平方米?13、计算下面图形的面积。(单位:厘米)14、 求图中阴影部分的面积。 15、 图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方米,求ED的长? 16、 下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米? 17、如图,正方形

7、ABCD中AB=4厘米,EC=10厘米,求阴影部分的面积。18、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(提示:连接DB)(单位:厘米)19、 图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。求平行四边形的面积。20、图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。21、两条对角线把梯形ABCD分割成四个三角形,已知两个三角形的面积,求另两个三角形的面积(单位:平方厘米)22、图中BO=2DO,阴影部分面积是4平方厘米,求梯形ABCD的面积。23、 在三角形ABC中(见右图),D

8、C=2BD,CE=3AE,阴影部分的面积是20平方厘米。求三角形ABC的面积。24、把下图三角形的底边BC四等分,在下面括号里天上“”、“”或“=”。25、 如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。求AH长多少厘米?26、 如图,在三角形ABC中,D是BC是中点,E、F是AC的三等分点。已知三角形ABC的面积是108平方厘米,求三角形CDE的面积。27、 下图中正方形ABCD的边长4厘米,求长方形EFGD的面积28、 下图中,BD=2厘米,DE=4厘米, EC=2厘米,F是AE的中点,三角形ABC的BC边上的高是4厘

9、米, 阴影面积是多少平方厘米?29、如图,ABCD是直角梯形,求阴影部分的面积和(单位:厘米)30、求阴影部分的面积和(单位:厘米) 31、下面的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积32、下面中,边长为10和15的两个正方形并放在一起,求阴影的面积。33右图ABCD是个梯形,它的面积是_。34图中梯形ABCD的面积是90平方厘米,AC=3AO,那么阴影部分的面积是_平方厘米。35、求下面图形中阴影部分的面积:(厘米) 3 7 12 836、如图,在三角形ABC中,D是BC是中点,E、F是AC的三等分点。已知三角形ABC的面积是48平方厘米,求三角形CDE的面积。37、如图,已

10、知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。求四边形ABCD的面积。38、7个连续奇数的和是1981,这7个连续奇数中最大的是( )、最小的是( )。39、请你算一算在一张圆形纸片中画12条直线,最多能把它分成( )块?40、从1000里减去125,加上120,再减去125,加上120按这样的方式进行运算,当计算结果是零时,一共减去了( )个125?41、有1克、2克、3克、4克和5克的砝码各一个,从中拿3个砝码放在天平的一边,能称出( )种不同的重量?42、比大小 :123456698765441234567987654343、有两筐水果,甲

11、筐水果的个数是乙筐的3倍,如果从乙筐中拿5个放进甲筐,这时甲筐的水果恰好是乙筐的5倍。原来两筐水果各有多少个?(用方程解)44、如下左图,D、E、F分别是BC、AD、BE的三等分点,已知SABC=27平方厘米,求SDEF求阴影部分面积例1.求阴影部分的面积。(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积, -21=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去 圆的面积。 设圆的半径为 r,因为正方形的面积为7平方厘米,所以 =7, 所以阴影部分的面积为:7-=7-7=1.505平方厘米例3.求

12、图中阴影部分的面积。(单位:厘米)解:最基本的方法之一。用四个圆组成一个圆,用正方形的面积减去圆的面积, 所以阴影部分的面积:22-0.86平方厘米。例4.求阴影部分的面积。(单位:厘米)解:同上,正方形面积减去圆面积, 16-()=16-4 =3.44平方厘米例5.求阴影部分的面积。(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见, 我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形, ()2-16=8-16=9.12平方厘米 另外:此题还可以看成是1题中阴影部分的8倍。例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米

13、?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) -()=100.48平方厘米 (注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。(单位:厘米)解:正方形面积可用(对角线长对角线长2,求) 正方形面积为:552=12.5 所以阴影面积为:4-12.5=7.125平方厘米 (注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆, 所以阴影部分面积为:()=3.14平方厘米例9.求阴影部分的面积。(单位:厘米) 解:把右面的正方形平移至左边

14、的正方形部分,则阴影部分合成一个长方形, 所以阴影部分面积为:23=6平方厘米例10.求阴影部分的面积。(单位:厘米)解:同上,平移左右两部分至中间部分,则合成一个长方形, 所以阴影部分面积为21=2平方厘米 (注: 8、9、10三题是简单割、补或平移)例11.求阴影部分的面积。(单位:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。 (-)=3.14=3.66平方厘米例12.求阴影部分的面积。(单位:厘米)解:三个部分拼成一个半圆面积 ()14.13平方厘米例13.求阴影部分的面积。(单位:厘米) 解: 连对角线后将叶形剪开移到右上面的空白部分,凑成正方形的一半. 所以

15、阴影部分面积为:882=32平方厘米例14.求阴影部分的面积。(单位:厘米)解:梯形面积减去圆面积, (4+10)4-=28-4=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。分析: 此题比上面的题有一定难度,这是叶形的一个半.解: 设三角形的直角边长为r,则=12,=6 圆面积为:2=3。圆内三角形的面积为122=6, 阴影部分面积为:(3-6)=5.13平方厘米例16.求阴影部分的面积。(单位:厘米) 解: =(116-36)=40=125.6平方厘米 例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米)解:上面的阴影部分以AB为轴翻转后,整个阴

16、影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。 所以阴影部分面积为:552+5102=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧, 所以圆弧周长为:23.1432=9.42厘米例19.正方形边长为2厘米,求阴影部分的面积。解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。 所以面积为:12=2平方厘米 例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。解:设小圆半径为r,4=36,r=3,大圆半径为R,=2=18, 将阴影部分

17、通过转动移在一起构成半个圆环, 所以面积为:(-)2=4.5=14.13平方厘米例21.图中四个圆的半径都是1厘米,求阴影部分的面积。解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米, 所以面积为:22=4平方厘米例22. 如图,正方形边长为8厘米,求阴影部分的面积。解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆. 阴影部分为一个三角形和一个半圆面积之和. ()2+44=8+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆. 所以阴影部分面积为一个圆减去一个叶形,叶形面积为:()2-44=8-16 所以阴影部分的面积为

18、:()-8+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?解:面积为个圆减去个叶形,叶形面积为:-11=-1 所以阴影部分的面积为:4-8(-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周率取3.1416,那么花瓣图形的的面积是多少平方厘米?分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成个整圆,而正方形中的空白部分合成两个小圆解:阴影部分为大正方形面积与一个小圆面积之和

19、为:44+=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)分析:四个空白部分可以拼成一个以为半径的圆 所以阴影部分的面积为梯形面积减去圆的面积, 4(4+7)2-=22-4=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积, 为: 552-4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC

20、是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。解: 因为2=4,所以=2 以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积, -224+4-2 =-1+(-1) =-2=1.14平方厘米例28.求阴影部分的面积。(单位:厘米)解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积, 三角形ABD的面积为:552=12.5 弓形面积为:2-552=7.125 所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:55-=25- 阴影面积为三角形ADC减去空白部分面积,为:1052-(25-)=19.625

21、平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,CBD=,问:阴影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC, 此两部分差即为:465-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。求BC的长度。 解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则 40X2-2=28 所以40X-400=56 则X=32.8厘米 例31.如图是一个正方形和半圆所组成的图形

22、,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。解:连PD、PC转换为两个三角形和两个弓形, 两三角形面积为:APD面积+QPC面积=(510+55)=37.5 两弓形PC、PD面积为:-55 所以阴影部分的面积为:37.5+-25=51.75平方厘米例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。求阴影部分的面积。解:三角形DCE的面积为:410=20平方厘米 梯形ABCD的面积为:(4+6)4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为: 4=9=28.26平方厘米例33.求阴影部分的面积

23、。(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为 (+)-6 =13-6 =4.205平方厘米例34.求阴影部分的面积。(单位:厘米)解:两个弓形面积为:-342=-6 阴影部分为两个半圆面积减去两个弓形面积,结果为 +-(-6)=(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积。解:将两个同样的图形拼在一起成为圆减等腰直角三角形 4-552 =(-)2=3.5625平方厘米富不贵只能是土豪,你可以一夜暴富,但是贵气却需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。” 如今我们不缺土豪,但是我

24、们缺少贵族。高贵是大庇天下寒士俱欢颜的豪气与悲悯之怀,高贵是位卑未敢忘忧国的壮志与担当之志 高贵是先天下之忧而忧的责任之心。精神的财富和高贵的内心最能养成性格的高贵,以贵为美,在不知不觉中营造出和气的氛围;以贵为高,在潜移默化中提升我们的素质。以贵为尊,在创造了大量物质财富的同时,精神也提升一个境界。一个心灵高贵的人举手投足间都会透露出优雅的品质,一个道德高贵的社会大街小巷都会留露出和谐的温馨,一个气节高贵的民族一定是让人尊崇膜拜的民族。别让富而不贵成为永久的痛。分享一段网上流传着改变内心的风水的方法,让我们的内心高贵起来:喜欢付出,福报就越来越多;喜欢感恩,顺利就越来越多;喜欢助人,贵人就越来越多;喜欢知足,快乐就越来越多;喜欢逃避,失败就越来越多;喜欢分享,朋友就越来越多。喜欢生气,疾病就越来越多;喜欢施财,富贵就越来越多;喜欢享福,痛苦就越来越多;喜欢学习,智慧就越来越多。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服