ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1MB ,
资源ID:2485896      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2485896.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2019年中考数学专题拓展讲练.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019年中考数学专题拓展讲练.doc

1、(完整版)2019年中考数学专题拓展讲练2019年中考数学专题拓展讲练专题六 动态问题一、专题概述1动态问题一般是指动态几何问题,它是以几何知识和图形为背景,研究几何图形(点、直线、三角形、四边形等)在运动变化中存在的函数关系或规律的一种题型。2解题策略:动中觅静;动静互化;以静制动;化动为静.3具体做法:全方位考察运动中的变量和图形之间的位置关系;运用分类讨论思想,画出发生变化的各个时刻的图形,变“动”为“静”;在各类“静态图形”中,综合运用相关知识求解.二、考点分析考点一、动点问题【例1】(2018吉林)如图,在矩形ABCD中,AB=2 cm,ADB=30P,Q两点分别从A,B同时出发,点

2、P沿折线ABBC运动,在AB上的速度是2 cm/s,在BC上的速度是 cm/s;点Q在BD上以2 cm/s的速度向终点D运动,过点P作PNAD,垂足为点N连接PQ,以PQ,PN为邻边作平行四边形PQMN设运动的时间为x(s),平行四边形PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQAB时,x= ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成13两部分时,直接写出x的值【解析】(1)当PQAB时,BQ=2PB,2x=2(22x),x=s故答案为s(2)如图1中,当0x时,重叠部分是四边形PQMNy=2xx=2x2如图中,当x1时,重

3、叠部分是四边形PQENy=(2x+2x)x=x2+x。如图3中,当1x2时,重叠部分是四边形PNEQy=(2x+2)x2(x1)=x23x+4;综上所述, (3)如图4中,当直线AM经过BC中点E时,满足条件则有:tanEAB=tanQPB,解得x=如图5中,当直线AM经过CD的中点E时,满足条件 此时tanDEA=tanQPB,,解得x=,综上所述,当x= s或 时,直线AM将矩形ABCD的面积分成13部分考点二、 动线问题【例2】(2018黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,C=120,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1

4、个单位长的速度作匀速运动,点N从A出发沿边ABBCCO以每秒2个单位长的速度作匀速运动。过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设APN的面积为S,求S与t的函数关系式及t的取值范围. (3)当0t4时,PN=OA=8,且PNOA,PM=t,SAPN=8t=4t;当4t时,PN=8-3(t-4)=20-3t,SAPN=4(20-3t)=406t;当t8时,PN=3(t4)-8=3t20,SAPN=4(3t20)=

5、6t -4;8t12时,ON=24-2t,N到OM距离为12-t, N到CP距离为4-(12-t)= t8,CP=t4,BP=12-t,SAPN=S菱形OABCSAON- SCPN SAPB=328(12-t) (t-4)(t-8)(12-t)4= - t2+12t56综上,S与t的函数关系式为:【名师点睛】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题. 考点三、动图问题【例3】(2018天津)在平面直角坐标系中,四边形是矩形,点,点,点。以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.(1)如图,当点落在边上时,求点的坐标;

6、(2)如图,当点落在线段上时,与交于点.求证;求点的坐标。(3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可)。在中,有, .。点的坐标为。(2)由四边形是矩形,得。又点在线段上,得.由(1)知,又,。由,得.又在矩形中,。.设,则,.在中,有,。解得。点的坐标为。(3).三、考点集训1(2018新疆自治区)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是A B1 C D22(2018江西)在菱形ABCD中,ABC=60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点E的位置随着点P的位置变化而变化

7、(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是 ,CE与AD的位置关系是 ;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积3(2018衡阳)如图,在ABC中,C=90,AC=BC=4 cm,动点P从点C出发以1 cm/s的速度沿CA匀速运动,同时动点Q从点A出发以 cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s)(1)当t为

8、何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式参考答案1【答案】B【解析】如图,作点M关于AC的对称点M,连接MN交AC于P,此时MP+NP有最小值,最小值为MN的长菱形ABCD关于AC对称,M是AB边上的中点,M是AD的中点,又N是BC边上的中点,AMBN,AM=BN,四边形ABNM是平行四边形,MN=AB=1,MP+NP=MN=1,即MP+NP的最小值为1,故选:B【名师点睛】本题考查的是轴对称-最短路

9、线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键2【解析】(1)如图1中,结论:PB=EC,CEAD理由:连接AC四边形ABCD是菱形,ABC=60,延长CE交AD于H,CAH=60,CAH+ACH=90,AHC=90,即CEAD故答案为PB=EC,CEAD(2)结论仍然成立理由:选图2,连接AC交BD于O,设CE交AD于H四边形ABCD是菱形,ABC=60,ABC,ACD都是等边三角形,ABD=CBD=30,APE是等边三角形,AB=AC,AP=AE,BAC=PAE=60,BAPCAE,BP=CE,ABP=ACE=30,CAH=60,CAH+ACH=90,AHC=90,即CEA

10、D选图3,连接AC交BD于O,设CE交AD于H四边形ABCD是菱形,ABC=60,ABC,ACD都是等边三角形,ABD=CBD=30,APE是等边三角形,AB=AC,AP=AE,BAC=PAE=60,BAPCAE,BP=CE,BAP=ACE=30,CAH=60,CAH+ACH=90,AHC=90,即CEAD (3)连接AC交BD于O,设CE交AD于H由(2)可知ECAD,CE=BP,在菱形ABCD中,ADBC,ECBC,BC=AB=,BE=,在BCE中,,BP=CE=8,AC与BD是菱形的对角线,ABD=ABC=30,ACBD,BD=2BO=2ABcos30=6,OA=AB=,DP=BPBD=

11、86=2,OP=OD+DP=5,在AOP中,AP=,S四边形ADPE=SADP+SAEP=2+(2)2=8【名师点睛】本题考查四边形综合题、菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、解直角三角形、锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题3【解析】(1)如图1中,连接BP在ACB中,AC=BC=4,C=90,AB=4.点B在线段PQ的垂直平分线上,BP=BQ,AQ=t,CP=t,BQ=4t,PB2=42+t2,(4t)2=16+t2,解得t=84或8+4(舍弃),t=(84)s时,点B在线段

12、PQ的垂直平分线上(2)由题意,得。如图2中,当PQ=QA时,易知APQ是等腰直角三角形,AQP=90则有PA=AQ,4t=t,解得t=如图3中,当AP=PQ时,易知APQ是等腰直角三角形,APQ=90则有:AQ=AP,t=(4t),解得t=2,综上所述:t= s或2 s时,APQ是以PQ为腰的等腰三角形(3)如图4中,连接QC,作QEAC于E,作QFBC于F则QE=AE,QF=EC,可得QE+QF=AE+EC=AC=4S=SQNC+SPCQ=CNQF+PCQE=t(QE+QF)=2t(0t4)【名师点睛】本题考查四边形综合题、等腰直角三角形的性质、等腰三角形的判定和性质、线段的垂直平分线的性质定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服