ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:1.03MB ,
资源ID:2471294      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2471294.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(几种证明全等三角形添加辅助线的方法.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

几种证明全等三角形添加辅助线的方法.doc

1、(完整版)几种证明全等三角形添加辅助线的方法全等三角形复习课适用学科数学适用年级初中二年级适用区域通用课时时长(分钟)120知识点全等三角形的性质和判定方法教学目标熟练掌握全等三角形的性质和判定方法,并学会用应用教学重点学会做辅助线证明三角形全等,常用的几种作辅助线的方法教学难点通过学习全等三角形,提高学生观察能力和分析能力教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。一、延长中线构造全等三角形例1。 如图1,AD是ABC的中线,求证:ABAC2AD。证明:延长AD至E,使ADDE,连接CE。如图2。AD是ABC的中线

2、,BDCD。又12,ADDE,ABDECD(SAS).ABCE.在ACE中,CEACAE,ABAC2AD。二、沿角平分线翻折构造全等三角形例2. 如图3,在ABC中,12,ABC2C。求证:ABBDAC。证明:将ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AEAB,连接ED。如图4。12,ADAD,ABAE,ABDAED(SAS)。BDED,ABCAED2C。而AEDCEDC,CEDC。所以ECEDBD。ACAEEC,ABBDAC。三、作平行线构造全等三角形例3。 如图5,ABC中,ABAC.E是AB上异于A、B的任意一点,延长AC到D,使CDBE,连接DE交BC于F。求证:EF

3、FD。证明:过E作EMAC交BC于M,如图6。则EMBACB,MEFCDF。ABAC,BACB。BEMB.故EMBE。BECD,EMCD.又EFMDFC,MEFCDF,EFMDFC(AAS).EFFD。四、作垂线构造全等三角形例4。 如图7,在ABC中,BAC90,ABAC。M是AC边的中点。ADBM交BC于D,交BM于E。求证:AMBDMC.证明:作CFAC交AD的延长线于F。如图8。BAC90,ADBM,FACABM90BAE。ABAC,BAMACF90,ABMCAF(ASA).FAMB,AMCF。AMCM,CFCM.MCDFCD45,CDCD,MCDFCD(SAS)。所以FDMC.AMB

4、FDMC。五、沿高线翻折构造全等三角形例5。 如图9,在ABC中,ADBC于D,BADCAD。求证:ABAC。证明:把ADC沿高AD翻折,点C落在线段DB上的E点处,即:在DB上截取DEDC,连接AE。如图10。ADCADE(SAS)。ACAE,CAED。AEDB,CB.从而ABAC。六、绕点旋转构造全等三角形例6. 如图11,正方形ABCD中,12,Q在DC上,P在BC上。求证:PAPBDQ。证明:将ADQ绕点A按顺时针方向旋转90,使AD与AB重合,得到ABM,即:延长CB到M,使BMDQ,连接AM.如图12。ABMADQ(SAS)。421,MAQD。ABCD,AQDBAQ1343MAP。

5、MMAP。PAPMPBBMPBDQ(因BMDQ)。【课堂练习】1、如图,已知AD=AE,AB=AC。求证:BF=FC2、如图,在 ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.F为CD中点 求证:CD=2CE3、如图,ABC中,C2B,12。求证:ABACCD4、 已知:AB=CD,A=D,求证:B=CABCD5、 已知:如图,CDAB于点D,BEAC于点E,BE、CD交于点O,且AO平分BAC求证:OBOC6、如图,已知C为线段AB上的一点,DACM和DCBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点.求证:DCEF是等边三角形。AEBMCF

6、7、如图所示,已知AEAB,AFAC,AE=AB,AF=AC.求证:(1)EC=BF;(2)ECBF8、如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N求证: ;9、如图,在等腰RtABC中,C90,D是斜边上AB上任一点,AECD于E,BFCD交CD的延长线于F,CHAB于H点,交AE于G求证:BDCG10、已知:如图,在梯形ABCD中,ADBC,BC=DC,CF平分BCD,DFAB,BF的延长线交DC于点E.求证:(1)BFCDFC;(2)AD=DE11、 已知:BC=DE,B=E,C=D,F是CD中点,求证:1=2ABCDEF211

7、2、 已知:AC平分BAD,CEAB,B+D=180,求证:AE=AD+BE13、如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点,试比较BE+CF与EF的大小.补充:常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理4) 过图形上某一点作特定的平分线,

8、构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、差、倍、分等类的题目特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答1、如图,ACBD,EA,EB分别平分CAB,DBA,CD过点E,求证;ABAC+BD2、如图,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F。 (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长。3、

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服