1、
2022-2023年人教版八年级数学下册期中测试卷(完美版)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.已知直角三角形两边的长为3和4,则此三角形的周长为( )
A.12 B.7+ C.12或7+ D.以上都不对
2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
3.在圆的周长C=2πR中,常量与变量分别是( )
A.2是常量,C、π、R是变量 B.2π是常量,C,R是变量
C.C、2是常量,R是变量 D.2是常量
2、C、R是变量
4.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为( )
A.6,(﹣3,5) B.10,(3,﹣5)
C.1,(3,4) D.3,(3,2)
5.若有意义,那么直角坐标系中点A(a,b)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
A. B.
3、 C.6 D.3
7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
8.如图,小华剪了两条宽为的纸条,交叉叠放在一起,且它们较小的交角为,则它们重叠部分的面积为( )
A.1 B.2 C D.
9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是( )
A. B. C. D.
10.如图,把△ABC纸片沿DE折叠,
4、当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )
A.∠A=∠1+∠2 B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
二、填空题(本大题共6小题,每小题3分,共18分)
1.的平方根是________.
2.若代数式有意义,则的取值范围为__________.
3.若m+=3,则m2+=________.
4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.
5、
5.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是________.
6.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于长为半径作弧,两弧交于点P.若点C的坐标为(),则a的值为________.
三、解答题(本大题共6小题,共72分)
1.解方程:.
2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值..
3.已知关于x的一元二次方程有两不相等的实数根.
①求
6、m的取值范围.
②设x1,x2是方程的两根且,求m的值.
4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
5.如图,有一个直角三角形纸片,两直角边cm, cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以
7、销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、C
2、D
3、B
4、D
5、A
6、D
7、C
8、D
9、A
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、±3
2、且.
3、7
4、10.
5、18
6、3
三、解答题(本大题共6小题,共72分)
1、
2、x+2;当时,原式=1.
3、①,②m的值为.
4、(1)略;(2)45°;(3)略.
5、CD的长为3cm.
6、(1)两次下降的百分率为10%;
(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.
6 / 6