ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:637.54KB ,
资源ID:2409076      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2409076.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022-2023学年广东省东莞市三校数学高一上期末监测试题含解析.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022-2023学年广东省东莞市三校数学高一上期末监测试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1下列说法不正确的是()A.奇函数的图象关于原点对称,但不一定过原点B.偶函数的图象关于y轴对称,但不一定和y轴相交C.若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则D.若奇函数的图象与y轴相交,交点不一定是原点2非零

2、向量,若点关于所在直线的对称点为,则向量为A.B.C.D.3若sin(),是第三象限角,则sin()()A.B.C.D.4对于函数,有以下几个命题的图象关于点对称,在区间递增的图象关于直线对称,最小正周期是则上述命题中真命题的个数是()A.0B.1C.2D.35 “”是的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速

3、度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1B.3C.5D.77已知ABC的平面直观图ABC是边长为a的正三角形,那么原ABC的面积为()A.B.C.D.8 ()A.0B.1C.6D.9已知函数的图象如图所示,则函数的图象为A.B.C.D.10设f(x)为偶函数,且在区间(,0)上是增函数,则xf(x)0解集为()A.(1,0)(2,)B.(,2)(0,2)C.(2,0)(2,)D.(2,0)(0,2)二、填空题:本大题共6小题,每小题5分,共30分。11点关于直线的对称点的坐标为_.12制造一种零件,甲机床的正品率为,乙机床的正品率为从它们制造的产品中各任抽1件,则两件都

4、是正品的概率是_13若则_14不等式的解集为,则的取值范围是_.15已知函数f(x)=cos(x+)(0,|),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则的最大值为_16已知幂函数的图象经过点(16,4),则k-a的值为_三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17已知全集,函数的定义域为集合,集合(1)若求:(2)设;.若是的充分不必要条件,求实数的取值范围.18设全集为,,,求:(1) (2) (3)19如图,在三棱锥SABC中,SC平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,ACB=90,

5、直线AM与直线SC所成的角为60.(1)求证:平面MAP平面SAC.(2)求二面角MACB的平面角的正切值;20设不等式的解集为集合A,关于x的不等式的解集为集合B.(1)若,求;(2)命题p:,命题q:,若p是q的必要不充分条件,求实数m的取值范围.21我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部

6、销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于AB,举例判断,对于CD根据函数奇偶性和对称性的关系分析判断即可【详解】对于A,是奇函数,其图象关于原点对称,但不过原点,所以A正确,对于B,是偶函数,其图象关于轴对称,但与轴不相交,所以B正确,对于C,若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则两个交点关于轴对称,所以,所以C正确,

7、对于D,若奇函数与y轴有交点,则,故,所以函数必过原点,所以D错误,故选:D2、A【解析】如图由题意点B关于所在直线的对称点为B1,所以BOA=B1OA,所以又由平行四边形法则知:,且向量的方向与向量的方向相同,由数量积的概念向量 在向量方向上的投影是OM=,设与向量方向相同的单位向量为:,所以向量=2=2=,所以=.故选A.点睛:本题利用平行四边形法则表示和向量,因为对称,所以借助数量积定义中的投影及单位向量即可表示出和向量,解题时要善于借助图像特征体现向量的工具作用.3、C【解析】由是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解

8、:因为是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.4、C【解析】先通过辅助角公式将函数化简,进而结合三角函数的图象和性质求得答案.【详解】由题意,函数周期,正确;,错误;,错误;由,正确.故选:C.5、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,即“”是的充分条件;当时,则 或,则 或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.6、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时

9、才能驾驶,则,即由于在定义域上单调递减,他至少经过5小时才能驾驶.故选:C7、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.8、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.9、A【解析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【详解】解:通过函数的图象

10、可知:,当时,可得,即函数是递增函数;排除C,D当时,可得,故选A【点睛】本题考查了指数函数的图象和性质,属于基础题.10、C【解析】结合函数的性质,得到,画出函数的图象,结合图象,即可求解.【详解】根据题意,偶函数f(x)在(,0)上为增函数,又,则函数f(x)在(0,)上为减函数,且,函数f(x)的草图如图,又由,可得或,由图可得2x0或x2,即不等式的解集为(2,0)(2,).故选:C.本题主要考查了函数的奇偶性与单调性的应用,其中解答中熟记函数的奇偶性与单调性,结合函数的图象求解是解答的关键,着重考查推理与运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设点关

11、于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【详解】设点关于直线的对称点为, 由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.12、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:13、【解析】 14、 0,1)#0k1【解析】分k0和k0两种情况进行讨论.k0时,可看为函数恒成立,结合二次函数的图像性质即可求解.【详解】当时,不等式可化为10,此时不等式的解集为,符合题意;当时,要使得不等式的解集为,则满足,解得;综上可得,实数的取

12、值范围是.故答案:.15、【解析】先根据是的零点,是图像的对称轴可转化为周期的关系,从而求得的取值范围,又根据所求值为最大值,所以从大到小对赋值验证找到适合的最大值即可【详解】由题意可得,即,解得,又因为在上单调,所以,即,因为要求的最大值,令,因为是的对称轴,所以,又,解得,所以此时,在上单调递减,即在上单调递减,在上单调递增,故在不单调,同理,令,在 上单调递减,因为,所以在单调递减,满足题意,所以的最大值为5.【点睛】本题综合考查三角函数图像性质的运用,在这里需注意:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期16、【解析】根据幂

13、函数的定义得到,代入点,得到的值,从而得到答案.【详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)分别求解集合,再求补集和交集即可;(2)由,根据条件得是的真子集,进而得或.【详解】(1)由得,解得,所以,当时,所以.(2),因为是的充分不必要条件,所以是的真子集,所以或,解得或18、 (1) ;(2) ;(3) .【解析】(1)根据集合的交集的概念得到结果;(2)根据集合的补集的概念得到结果;(3)先求AB的并集,再根据补集的概念得到结果.解析:(1)(2

14、)(3) 19、(1)证明见解析(2)【解析】(1)由已知可证BC平面SAC,又PMBC,则PM面SAC,从而可证平面MAP平面SAC;(2)由AC平面SBC,可得MCB为二面角MACB的平面角,过点M作MNCB于N点,连接AN,则AMN=60,由勾股定理可得,在中,可得,从而在中,即可求解二面角MACB的平面角的正切值.【小问1详解】证明:SC平面ABC,SCBC,又ACB=90,ACBC,又ACSC=C,BC平面SAC,又P,M是SC、SB的中点,PMBC,PM面SAC,又PM平面MAP,平面MAP平面SAC;【小问2详解】解:SC平面ABC,SCAC,又ACBC,BCSC=C,AC平面S

15、BC,ACCM,ACCB,从而MCB为二面角MACB的平面角,直线AM与直线PC所成的角为60,过点M作MNCB于N点,连接AN,则AMN=60,在CAN中,由勾股定理可得,在中,在中,.20、(1)(2)【解析】(1)求解A,B,根据交集、补集运算即可;(2)由题意转化为,建立不等式求解即可.【详解】(1),解得,所以,当时,由可得,解得,所以,所以(2)由解得,即,因为命题p:,命题q:,且p是q的必要不充分条件,所以,所以,且等号不同时成立,解得,即实数m的取值范围为【点睛】关键点点睛:根据充分条件、必要条件的意义,转化为集合间的包含、真包含关系,是解题的关键,属于中档题.21、(1);

16、(2)32万部,最大值为6104万美元.【解析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后由,将代入即可.(2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结论.【详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,解得,当时,当时,.所以(2)当时,所以;当时,由于,当且仅当,即时,取等号,所以此时的最大值为5760.综合知,当,取得最大值为6104万美元.【点睛】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服