ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:662.54KB ,
资源ID:2391680      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2391680.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(广西玉林高中2022年数学高一上期末监测试题含解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广西玉林高中2022年数学高一上期末监测试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.下列函数中,是偶函数,且在区间上单调递增的为() A

2、 B. C. D. 2.已知函数,那么() A.-2 B.-1 C. D.2 3.设,,,则a,b,c的大小关系是( ) A. B. C. D. 4.已知,,则的值为 A. B. C. D. 5.△ABC的内角、、的对边分别为、、,若,,,则() A. B. C. D. 6.已知集合,为自然数集,则下列结论正确的是() A. B. C. D. 7.下列函数是幂函数的是() A. B. C. D. 8.已知定义在上的偶函数,在上为减函数,且,则不等式的解集是() A. B. C. D. 9.若sinx<0,且sin(cosx)>0,则角是

3、A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 10.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于() A.1 B.-1 C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________ 12.已知函数,则____ 13.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的

4、由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时). 时刻(t) 0 2 4 6 8 10 12 水深(y)单位:米 5.0 4.8 4.7 4.6 4.4 4.3 4.2 时刻(t) 14 16 18 20 22 24 水深(y)单位:米 4.3 4.4 4.6 4.7 4.8 5.0 用函数模型来近似地描述这些数据,则________. 14.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________ 15.在中,已知是x的方程的两个实根,则_______

5、 16.若一扇形的圆心角为,半径为,则该扇形的面积为__________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知集合,. (1)若,求实数的值; (2)若,求实数的取值范围. 18.设圆的圆心在轴上,并且过两点. (1)求圆的方程; (2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由. 19.已知. (Ⅰ)若,求的值; (Ⅱ)若为第三象限角,且,求的值. 20.已知是小于9的正整数,,,求 (1) (2) (3) 21.已知角的顶点为坐标原点,始边为轴的非负

6、半轴,终边经过点,且. (1)求实数的值; (2)若,求的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】根据基本初等函数的奇偶性及单调性逐一判断. 【详解】A.在其定义域上为奇函数; B.,在区间上时,,其为单调递减函数; C.在其定义域上为非奇非偶函数; D.的定义域为, 在区间上时,,其为单调递增函数, 又,故在其定义域上为偶函数. 故选:D. 2、A 【解析】直接代入计算即可. 【详解】 故选:A. 3、C 【解析】利用指数函数和对数函数的性质确定a

7、b,c的范围,由此比较它们的大小. 【详解】∵ 函数在上为减函数,, ∴ ,即, ∵ 函数在上为减函数,, ∴ ,即, 函数在上为减函数, ,即 ∴ . 故选:C. 4、A 【解析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果. 【详解】由可知:, 由得: 本题正确选项: 【点睛】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误. 5、C 【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值. 【详解】解:∵,,, ∴由余弦定理可得,

8、求得:c=1. ∴ ∴. 故选:C. 【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题. 6、C 【解析】由题设可得,结合集合与集合、元素与集合的关系判断各选项的正误即可. 【详解】由题设,,而为自然数集,则,且, 所以,,故A、B、D错误,C正确. 故选:C 7、C 【解析】由幂函数定义可直接得到结果. 【详解】形如的函数为幂函数,则为幂函数. 故选:C. 8、D 【解析】根据函数的性质,画出函数的图象,数形结合求出解集 【详解】由题意,画出的图象如图,等价于,或,由图可知,不等式的解集为 故选:D 9、D 【解析】根据三角函数角的范围和符

9、号之间的关系进行判断即可 【详解】∵﹣1≤cosx≤1,且sin(cosx)>0, ∴0<cosx≤1, 又sinx<0, ∴角x为第四象限角, 故选D 【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键 10、A 【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可 【详解】当时,,则, 所以当时,,所以 又是偶函数,, 所以 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式: 故答案为.

10、 12、16、 【解析】令,则,所以,故填. 13、## 【解析】根据题意条件,结合表内给的数据,通过一天内水深的最大值和最小值,即可列出关于、之间的关系,通过解方程解出、,即可求解出答案. 【详解】由表中某市码头某一天水深与时间的关系近似为函数,从表中数据可知,函数的最大值为5.0,最小值为4.2,所以,解得,,故. 故答案为:或写成. 14、 【解析】,把代入,得 ,, ,故答案为 考点:1、已知三角函数的图象求解析式;2、三角函数的周期性 【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊

11、点求时,一定要分清特殊点是“五点法”的第几个点, 用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点) 时;“第二点”(即图象的“峰点”) 时;“第三点”(即图象下降时与轴的交点) 时;“第四点”(即图象的“谷点”) 时;“第五点”时 15、## 【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小. 【详解】由题设,,, 又,且, ∴. 故答案为:. 16、 【解析】利用扇形的面积公式可求得结果. 【详解】扇形的圆心角为,因此,该扇形的面积为. 故答案:. 三、解答题:本大题共5小题,共70分

12、解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2)或 【解析】(1)求出集合,再根据列方程求解即可; (2)根据分,讨论求解. 【小问1详解】 由已知得 , 解得; 【小问2详解】 当时,,得 当时,或,解得或, 综合得或. 18、 (1) (2) 或. 【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可 试题解析: (1

13、)∵圆的圆心在的垂直平分线上, 又的中点为,,∴的中垂线为. ∵圆的圆心在轴上,∴圆的圆心为, 因此,圆的半径, ∴圆的方程为. (2)设是直线与圆的交点, 将代入圆的方程得:. ∴. ∴的中点为. 假如以为直径的圆能过原点,则. ∵圆心到直线的距离为, ∴. ∴,解得. 经检验时,直线与圆均相交, ∴的方程为或. 点睛:直线和圆的方程的应用,直线和圆的位置关系,务必牢记d与r的大小关系对应的位置关系结论的理解. 19、(Ⅰ);(Ⅱ). 【解析】(Ⅰ)由诱导公式化简得,代入即可得解; (Ⅱ)由诱导公式可得,再由同角三角函数的平方关系可得,代入即可得解. 【详解】(Ⅰ)由于 , 又,所以. (Ⅱ)因为,所以. 又因为第三象限角,所以, 所以. 20、(1) (2) (3) 【解析】(1)根据交集概念求解即可. (2)根据并集概念求解即可. (3)根据补集和并集概念求解即可. 【小问1详解】 ,,. 【小问2详解】 ,,. 【小问3详解】 ,,, . 21、(1)或 (2) 【解析】(1)利用三角函数定义可求的值. (2)利用诱导公式可求三角函数式的值. 【小问1详解】 由题意可得, 所以,整理得, 解得或. 【小问2详解】 因为,所以由(1)可得, 所以, 所以.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服