ImageVerifierCode 换一换
格式:PDF , 页数:33 ,大小:1.44MB ,
资源ID:238466      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/238466.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【曲****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【曲****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(小学数学总复习资料.pdf)为本站上传会员【曲****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

小学数学总复习资料.pdf

1、常用的数量关系式1、每份数X份数=总数 总数每份数=份数 总数份数=每份数2、1倍数X倍数=儿倍数 儿倍数+1倍数=倍数 儿倍数+倍数=1倍数3、速度X时间=路程 路程+速度=时间 路程时间=速度4、单价X数量=总价 总价单价=数量 总价数量=单价5、工作效率X工作时间=工作总量 工作总量+工作效率=工作时间工作总量:工作时间=工作效率6、加数十加数=和7、被减数一减数=差8、因数X因数=积9、被除数除数=商和 1个加数=另一个加数被减数一差=减数 差+减数=被减数积:一个因数=另一个因数被除数商=除数 商X除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积周长=边长X4 C-4a

2、面积二边长X边长 S=aXa2、正方体(V:体积 a:棱长)a:边长)表面积=棱长X棱长X6 S表=义义6体积二棱长X棱长X棱长V二a X a X a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)X2 C=2(a+b)面积=长义宽 S=ab4、长方体(V:体积 s:面积 a:长 b:宽 h:高)表面积(长X宽+长X高+宽X高)X 2 S=2(ab+ah+bh)(2)体积=长义宽义高 V=abh 5、三角形(s:面积 a:底 h:高)面积=底义局42 s-ah4-2三角形高=面积X2:底 三角形底=面积X2+高6、平行四边形(s:面积 a:面积二底X ij sah7、梯形(s:面积

3、a:上底面积二(上底+下底)X高+2底 h:高)b:下底 h:高)s=(a+b)X h+28、圆形(S:面积 C:周长 ji d=直径 r=半径)周长二直径X Ji=2X ji X半径 C=Ji d=2 ji r(2)面积=半径X半径X ji9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积二底面周长X高二ch(2 ji r或ji d)(2)表面积二侧面积+底面积X 2(3)体积二底面积X高(4)体积=侧面积+2X半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积X高4311、总数+总份数=平均数12、和差问题的公式(和+差)+2=大数1

4、3、和倍问题和(倍数-1)=小数14、差倍问题差+(倍数一1)=小数(和差):2=小数小数X倍数=大数(或者和一小数=大数)小数X倍数=大数(或 小数+差=大数)15、相遇问题相遇路程=速度和X相遇时间相遇时间=相遇路程:速度和速度和=相遇路程+相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量+溶液的重量X 100%=浓度溶液的重量X浓度=溶质的重量溶质的重量+浓度=溶液的重量17、利润与折扣问题利润=售出价一成本利润率=利润+成本X 100%=(售出价+成本-1)X 100%涨跌金额=本金X涨跌百分比利息=本金X利率X时间税后利息=本金X利率X时间X(1 20%)常用单位换

5、算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年1年=12月 大月(31天)有:135781012月 小月(30天)的 有:4691

6、1 月平年2月28天,闰年2月29天 平年全年365天,闰年全年366天1日=24小时1时=60分 1分=60秒 1时=3600秒基本概念第一章数和数的运算一概念(一)整数1整数的意义自然数和。都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10o这样的计数法叫做十进制计 数法。4数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b W 0),除得的商是整数而没有余数,我们就说a 能被b

7、整除,或者说b能整除a o如果数a能被数b(b W 0)整除,a就叫做b的倍数,b就叫做a的 约数(或a的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是 它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最 大的约数是Wo一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数 有:3、6、9、12其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、40

8、5都能被5整 除。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3 整除。二个数的末两位数能被4(或25)整除,这个数就能被4(或25)整 除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344 都能被 8 整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不

9、能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、970一个数,如果除了 1和它本身还有别的约数,这样的数叫做合数,例 如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了 1外,不是质数就是合数。如果 把自然数按其约数的个数的不同分类,可分为质数、合数和1和0。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合 数的因数,

10、叫做这个合数的质因数,例如15=3X5,3和5叫做15的 质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做 这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的 约数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列 几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,如果几

11、个数中任意两 个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做 这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3 的公倍数,6是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1小数的意义把

12、整数1平均分成10份、100份、1000份 得到的十分之几、百 分之几、千分之几 可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分 之几.一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做 小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部 分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高 分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是 10o2小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都 是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.2

13、5、5.26 都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:n循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重 复出现,这个数叫做循环小数。例如:3.555 0.0333 12.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小 数的循环节。例如:3.99的循环节是“9”,0.5454 的循环节是“54”o纯循环

14、小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111 0.5656 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有个数字,就只在它的上面点一个点。例如:3.777简写作 0.5302302 简写作 o(三)分数1分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表 示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这 样的多

15、少份。把单位“1,平均分成若干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假 分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率 或百分比。百分数通常用“”来表示。百分号是表示百分数的符号。二方法(一)数的读法和写

16、法1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先 按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末 尾的0都不读出来,其它数位连续有几个。都只读一个零。2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单 位也没有,就在那个数位上写0。3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点 读作“点”,小数部分从左向右顺次读出每一位数位上的数字。4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数 点写在个位右下角,小数部分顺次写出每一个数位上的数字。5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子 和分母按照整数的读法来读

17、。6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写 法来写。7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按昭壑数的读法来读。8.百分数访写法:百分数通常不写成分数形式,而在原来的分子后面 加上百分号“”来表示。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写 成近似数。1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改 写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 1254300000改写成以万做单位的数是125430万;改写成以亿做单 位的数1

18、2.543亿。2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位 后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面 的尾数是13亿。3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把 尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数 相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相 同,就看下一位,哪一位上的数大那个数就大。2.比较小数的大

19、小:先看它们的整数部分,整数部分大的那个数就 大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数 也相同的,百分位上的数大的那个数就大3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同 的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再 比较两个数的大小。(三)数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的 不能除尽,不能化成有限小数的,一般保留三位小数。3.一个最简分数,如果分母中除了 2和5以外,不含有其他的质因数,这个分数就

20、能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百 分号。5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把 小数点向左移动两位。6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三 位小数),再把小数化成百分数。7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分 数。(四)数的整除1.把一个合数分解质因数,通常用短除法。先用能整除这个合数的质 数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去 除,一直

21、除到所得的商只有公约数1为止,然后把所有的除数连乘求 积,这个积就是这几个数的的最大公约数。3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除 数和商连乘求积,这个积就是这几个数的最小公倍数。4.成为互质关系的两个数:1和任何自然数互质;相邻的两个自然 数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两 个合数的公约数只有1时,这两个合数互质。(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通 常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分 数化成

22、用这个最小公倍数作分母的分数。三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同 的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1.小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两 位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大 1000 倍.2.小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两 位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小 1000 倍.3.小数点向左移或者向右移位数不够时,要用“0”补足位。(四)分数的

23、基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除 外),分数的大小不变。(五)分数与除法的关系1.被除数除数=被除数/除数2.因为零不能作除数,所以分数的分母不能为零。3.被除数 相当于分子,除数相当于分母。四运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和 是总数。加数十加数二和 一个加数二和一另一个加数2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数 叫做差。被减数是总数,减数和差分别是部分数。加法

24、和减法互为逆运算。3整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和 叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。一个因数X 一个因数二积 一个因数二积另一个因数4整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的 因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个 数除以0,均得不到一个确定的商。被除数除数二商 除数二被除数商 被除数二商X除数(二)小数四则运算1.小数加法:小数加法的意

25、义与整数加法的意义相同。是把两个数合并成一个数的 运算。2.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的 一个加数,求另一个加数的运算.3.小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的 简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。4.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其 中一个因数,求另一个因数的运算。5.乘方:求几个相同因数的积的运算叫做乘方。例如3 X 3=32(三)分数四则运算1.分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的 运算。2 分数减法

26、.分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的 一个加数,求另一个加数的运算。3.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简 便运算。4.乘积是1的两个数叫做互为倒数。5.分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其 中一个因数,求另一个因数的运算。(四)运算定律1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a o2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个 数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。3.乘法交换律:两个数相乘,交换因数的

27、位置它们的积不变,即aXb二bXa。4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个 数相乘,再和第一个数相乘,它们的积不变,即(aXb)Xc二aX(bXc)。5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两 个积相加,即(a+b)X c=a X c+b X c。6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差 不变,即 a-b-c=a-(b+c)。(五)运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进O2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减

28、,就从它的前一位 退一作十,和本位上的数合并在一起,再减。3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用 因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次 乘得的数加起来。4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果 不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从 积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。6.除数是整数的小数除法计算

29、法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。7.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补0”),然后按照除数是整数的除法法则进行计算。8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数

30、 乘分数,用分子相乘的积作分子,分母相乘的积作分母。12.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六)运算顺序1.小数四则运算的运算顺序和整数四则运算顺序相同。2.分数四则运算的运算顺序和整数四则运算顺序相同。3.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。4.有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。5.第一级运算:加法和减法叫做第一级运算。6.第二级运算:乘法和除法叫做第二级运算。五应用(一)整数和小数的应用1简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的 应用题,通常叫做

31、简单应用题。(2)解题步骤:a审题理解题意:了解应用题的内容,知道应用题的条件和问题。读 题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以 复述条件和问题,帮助理解题意。b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉 什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的 含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过 程是否正确,是否符合题意。如果发现错误,马上改正。2复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运 算解答的应用题,通常叫做复合应用题。(2)含有

32、三个已知条件的两步计算的应用题。求比两个数的和多(少)几个数的应用题。比较两数差与倍数关系的应用题。(3)含有两个已知条件的两步计算的应用题。已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或 差)。已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。(4)解答连乘连除应用题。(5)解答三步计算的应用题。(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的 应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相 同,只是在已知数或未知数中间含有小数。d答案:根据计算的结果,先口答,逐步过渡到笔答。(3)解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少

33、,求甲乙两数的和是 多少。b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。(4)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数 比乙数多多少,或乙数比甲数少多少。c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多 少,求乙数是多少。(5)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是 它的几倍,求另一个数是多少。(6)解答除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:

34、已知一个数和把 这个数平均分成几份的,求每一份是多少。b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。C求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。d已知一个数的几倍是多少,求这个数的应用题。(7)常见的数量关系:总价二单价X数量路程二速度X时间工作总量二工作时间X工效总产量二单产量X数量3典型应用题 具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典 型应用题。(1)平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均 每份是

35、多少。数量关系式:数量之和小数量的个数二算术平均数。加权平均数:已知两个以上若干份的平均数,求总平均数是多少。数量关系式(部分平均数X权数)的总和小(权数的和)=加权平均 数。差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。数量关系式:(大数一小数)92=小数应得数 最大数与各数之差的 和-总份数=最大数应给数 最大数与个数之差的和小总份数二最小数应得数。例:一辆汽车以每小时100千米 的速度从甲地开往乙地,又以每小 时60千米的速度从乙地开往甲地。求这辆车的平均速度。分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地 的路程设为“1”

36、,则汽车行驶的总路程为“2”,从甲地到乙地的 速度为100,所用的时间为,汽车从乙地到甲地速度为60千米,所用的时间是,汽车共行的时间为+=,汽车的平均速度为2 4-=75(千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种 量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正 归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单 归一。”两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双 归

37、一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的 归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的 归一问题。解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一 量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量X份数=总数量(正归一)总数量单一量二份数(反归一)例一个织布工人,在七月份织布4774米,照这样计算,织布6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。693 0(477 4 31)=45(天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的 单位数量(或单位数量的个数),通过求

38、总数量求得单位数量的个数(或 单位数量)。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不 过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量X单位个数另一个单位数量=另一个单位数 量 单位数量X单位个数另一个单位数量二另一个单位数量。例 修一条水渠,原计划每天修800米,6天修完。实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也 把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0 X 6 4=1200(米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数

39、 各是多少的应用题叫做和差问题。解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的 和),然后再求另一个数。解题规律:(和+差)+2=大数 大数一差二小数(和一差)2二小数 和一小数二大数例某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调 46人到甲班工作,这时乙班比甲班人数少12人,求原来甲班和乙班 各有多少人?分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化 成2个乙班,即94 12,由此得到现在的乙班是(94 12)+2=41(人),乙班在调出46人之前应该为41+46=87(人),甲 班为94-87=7(人)(5)和倍问题:已知两个数的和及它们之间的倍数关

40、系,求两个数 各是多少的应用题,叫做和倍问题。解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几 倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多 少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求 另一个数(或几个数)的数量。解题规律:和小倍数和二标准数 标准数X倍数二另一个数例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆 内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。列式为(115-7)+(5+1)=18(辆),18 X 5+7=97(

41、辆)(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各 是多少的应用题。解题规律:两个数的差个(倍数一1)=标准数 标准数X倍数二另一 个数。例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样 的长度,结果甲所剩的长度是乙绳长的3倍,甲乙两绳所剩长度各 多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙 绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)(3-1)=17(米)乙绳剩下的长度,17 X 3=51(米)甲绳剩下的长度,29-17=12(米)剪去的长度。(7)行程问题:关于走路、行车等问题,一般都是计算路程、

42、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类 问题的规律解答。解题关键及规律:同时同地相背而行:路程二速度和X时间。同时相向而行:相遇时间二速度和X时间同时同向而行(速度慢的在前,快的在后):追及时间二路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程二速度差X时间。例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千 米,乙每小时行9千米,甲几小时追上乙?分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近 乙(16-9)千米,这是速度差。已知甲在乙的后面28千米(追击路程),28千

43、米 里包含着几个(16-9)千米,也就是追击所需要的时间。列式28+(16-9)=4(小时)(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问 题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考 虑水速在逆行和顺行中的不同作用。船速:船在静水中航行的速度。水速:水流动的速度。顺水速度:船顺流航行的速度。逆水速度:船逆流航行的速度。顺速=船速+水速逆速二船速一水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速 的差,所以流水问题当作和差问题解答。解题时要以水流为线索。解题规律:船行速度二(顺水速度+逆流速度)+2流水速度=(顺流速度逆流速度)+2路程二顺流速度

44、X顺流航行所需时间路程二逆流速度X逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地 后,又逆水 航行,回到甲地。逆水比顺水多行2小时,已知水速每 小时4千米。求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速 度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速 度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水 少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用 的时间,这样就能算出甲乙两地的路程。列式为284 X 2=20(千米)20 X 2=40(千米)40(4 X 2)=5(小时)28 X 5=1

45、40(千米)。(9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。解题关键:要弄清每一步变化与未知数的关系。解题规律:从最后结果出发,采用与原题中相反的运算(逆运算)方 法,逐步推导出原数。根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导 出原数。解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除 法时别忘记写括号。例某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,则四 个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为1684,以四班为例,

46、它调给 三班3人,又从一班调入2人,所以四班原有的人数减去3再加上 2等于平均数。四班原有人数列式为168 4-2+3=43(人)一班原有人数列式为1684-6+2=38(人);二班原有人数列式为 168 4-4-6+6=42(人)三班原有人数列式为168+4-3+6=45(人)。(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而 确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。解题规律:沿线段植树棵树二段数+1 棵树二总路程小株距+1株距二总路程小(棵树-1)

47、总路程二株距X(棵树-1)沿周长植树棵树二总路程株距株距二总路程棵树总路程二株距X棵树例 沿公路一旁埋电线杆301根,每相邻的两根的间距是50米。后 来全部改装,只埋了 201根。求改装后每相邻两根的间距。分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为50 X(301-1)(201-1)=75(米)(11)盈亏问题:是在等分除法的基础上发展起来的。他的特点是 把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次 有余,一次不足(或两次都有余),或两次都不足),已知所余和不足 的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。解题关键:盈亏问题的解法要点是先求两次分配中分

48、配者没份所得物 品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前 一个差去除后一个差,就得到分配者的数,进而再求得物品数。解题规律:总差额每人差额二人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+不足第一次正好,第二次多余或不足,总差额二多余或不足第一次多余,第二次也多余,总差额二大多余-小多余第一次不足,第二次也不足,总差额=大不足-小不足例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组10 人,则多25支,如果小组有12人,色笔多余5支。求每人分得 几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。这个活动小组有12人,比10人 多

49、2人,而色笔多出了(25-5)=20支,2个人多出20支,一个人分得10支。列式为(25-5)(12-10)=10(支)10 X 12+5=125(支)。(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种 应用题被称为“年龄问题”。解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着 时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不 变的特点。例 父亲48岁,儿子21岁。问几年前父亲的年龄是儿子的4倍?分析:父子的年龄差为48-21=27(岁)。由于几年前父亲年龄是儿子 的4倍,可知父子年龄的倍数差是

50、(4-1)倍。这样可以算出几年 前父子的年龄,从而可以求出几年前父亲的年龄是儿子的4倍。列式 为:21(48-21)(4-1)=12(年)(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全 是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头 数。解题规律:(总腿数一鸡腿数X总头数)一只鸡兔腿数的差二兔子只 数兔子只数二(总腿数-2X总头数)如果假设全是兔子,可以有下面的式子:鸡的只数二(4X总头数-总腿数)+2兔的头数二总头数-鸡的只数例 鸡兔同笼共

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服