ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:928.51KB ,
资源ID:2382135      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2382135.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(新北师大版探索三角形全等的条件(三).ppt)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新北师大版探索三角形全等的条件(三).ppt

1、2、请在下列空格中填上适当的条件,使ABCDEF。在ABC和DEF中ABC DEF()ABCDEFSSSAB=DEBC=EFAC=DFASAA=DAB=DEB=DEFAC=DFACB=FAASB=DEFBC=EFACB=FBC=EF教学目标:教学目标:1、掌握三角形全等的、掌握三角形全等的“SAS”条件,条件,并能进行简单的推理。并能进行简单的推理。2、理解、理解“SSA”不能判定两三角形不能判定两三角形全等。全等。3、了解、了解“执果索因执果索因”的思考方法。的思考方法。思考:思考:已知一个三角形的两条边和一已知一个三角形的两条边和一个角,那么这两条边与这一个角的个角,那么这两条边与这一个角

2、的位位置上置上有几种可能的情况呢?有几种可能的情况呢?ABC图一“两边和其中两边和其中一边的对角一边的对角”“两边和其夹角两边和其夹角”。ABC图二 作三角形作三角形,两边为两边为2.5cm2.5cm、3.5cm3.5cm,夹角为,夹角为40400 0探究探究1 1:两边及其夹角两边及其夹角画法:画法:1 1、画、画MAN=40MAN=40;2 2、在射线、在射线AMAM上截取上截取AC=3.5cmAC=3.5cm;3 3、在射线、在射线ANAN上截取上截取AB=2.5cmAB=2.5cm;4 4、连结、连结BCBC。ABCABC为所作三角形。为所作三角形。发现:发现:如果两个三角形有及其对如

3、果两个三角形有及其对应相等,那么这两个应相等,那么这两个三角形全等三角形全等。与同桌比较,能完全重合吗?与同桌比较,能完全重合吗?两边及一边对角行吗?两边及一边对角行吗?两边两边夹角夹角1 1、画、画MAN=40MAN=40;2 2、在射线、在射线AMAM上截取上截取AC=3.5cmAC=3.5cm;3 3、以点、以点C C为圆心,为圆心,2.5cm2.5cm长为半径画圆,长为半径画圆,与与ANAN交于点交于点B B4 4、ABCABC为所作三角形为所作三角形探究探究2 2:两边及一边的对角两边及一边的对角 作三角形作三角形,两边为两边为2.5cm2.5cm、3.5cm3.5cm,2.5cm

4、2.5cm边所对得角为边所对得角为40400 0ABCDEF2.5cm3.5cm40403.5cm2.5cm结论:结论:两边及其一边所对的角相两边及其一边所对的角相等,两个三角形等,两个三角形不一定不一定全等全等探究探究2 2:如果两边及其一边所对的角相等如果两边及其一边所对的角相等 三角形全等判定条件(三角形全等判定条件(3 3)SASSAS用符号语言表达为:用符号语言表达为:在在ABC与与DEF中中ABCDEF(SAS)AB=DE(已知)(已知)B=E(已知)(已知)BC=EF(已知)(已知)两边两边及其及其夹角夹角对应相等对应相等的两个三的两个三角形全等。简写成角形全等。简写成“边角边边

5、角边”“SASSAS”ABCDEF分别找出各题中的全等三角形,分别找出各题中的全等三角形,并说明理由。并说明理由。ABC40 40 DEF(1)ABCABCEFD EFD 根据根据“SASSAS”ADCADCCBA CBA 根据根据“SASSAS”DCAB(2)已知:如图,已知:如图,AB=CB AB=CB,ABD=CBD ABD=CBD 问:问:ABD ABD 和和 CBD CBD 全等吗?全等吗?例例1 1ABCD已知:如图,已知:如图,AB=CB AB=CB,ABD=CBD ABD=CBD 问:问:AD=CD AD=CD 吗?吗?例例1 1ABCD?已知:如图,已知:如图,AB=CB A

6、B=CB,ABD=CBD ABD=CBD 问:问:BDBD平分平分ADCADC 吗?吗?例例1 1ABCD归纳:归纳:判定两条线段相判定两条线段相等或两个角相等可以通等或两个角相等可以通过从它们所在的两个三过从它们所在的两个三角形全等而得到。角形全等而得到。?ABCDO已知:如图已知:如图ACAC与与BDBD相交于点相交于点O,OO,O是是ACAC、BDBD中点中点,AB,AB与与DCDC平行么?平行么?例例3 3 小明做了一个如图所示的风筝,其中小明做了一个如图所示的风筝,其中EDH=FDH,EDH=FDH,ED=FD ED=FD,小明不用测量就能知道,小明不用测量就能知道EH=FHEH=F

7、H吗?吗?DEFH小明做了一个如图所示的风筝,其中EDH=FDH,ED=FD,将上述条件标注在图中,小明不用测量就能知道EH=FH吗?EFDH在在 HEDHED和和 HFDHFD中,中,HED HED HFD HFD(SASSAS)1.1.已知:如图,已知:如图,ADBCADBC,AD=CBAD=CB,求证:求证:DC=BA.DC=BA.AD=CBAD=CB(已知)(已知)1=21=2(已知)(已知)AC=CA AC=CA(公共边)(公共边)ADCCBAADCCBA(SASSAS).【证明证明】ADBC,ADBC,1=21=2(两直线平行,内错角相等)(两直线平行,内错角相等).在在DACDA

8、C和和BCABCA中中,DC1A2B DC=BA85页,185页,2已知:如图已知:如图AC=BD,MAC=BD,M、N N分别是分别是ACAC、BCBC的中的中点,点,DM=DNDM=DN吗?说明理由吗?说明理由.思考题:思考题:AMNBD课堂小结:课堂小结:你这堂课学到了什么?你这堂课学到了什么?1、“边角边()边角边()”2、角相等或线段相等角相等或线段相等的问题一般的问题一般可以通过可以通过全等全等得到解决。得到解决。BCDEA如图,已知如图,已知ABABACAC,ADADAEAE。那么那么B B与与C C相等吗?为什么?相等吗?为什么?解:相等解:相等 理由:在理由:在ABDABD和

9、和ACEACE中中 ABDACEABDACE(SASSAS)B BC C AEADAAACABBCDEA如图,已知如图,已知ABAC,ADAE。求证:求证:BCCEABAD证明:在证明:在ABD和和ACE中中ABDACE(SAS)BC(全等三角形(全等三角形 对应角相等)对应角相等)例:如图,已知例:如图,已知ABC中,中,BE和和CD分别为分别为B和和C的平分线,且的平分线,且BD=CE,1=2.求证:求证:BE=CDABCED12法一、法二ABCED12证明:证明:DBC=21,ECB=22 (角平分线的定义)(角平分线的定义)1=2 DBC=ECB在在DBC和和ECB中中 BD=CE D

10、BC=ECB BC=CB(公共边)(公共边)DBCECB(SAS)BE=CD(全等三角形的对应边相等)(全等三角形的对应边相等)3.3.如图,点如图,点A,E,B,DA,E,B,D在同一条直线上,在同一条直线上,AE=DBAE=DB,AC=DFAC=DF,ACDF.ACDF.请探索请探索BCBC与与EFEF有怎样的关有怎样的关系系?并说明理由?并说明理由.F F_ _E E_ _B B_ _A A_ _C CD D关系包括:数量关系、位置关系关系包括:数量关系、位置关系DF=AC(DF=AC(已知)已知)D=AD=A(已证)(已证)DE=ABDE=AB(已证)(已证)EFDBCAEFDBCA(

11、SASSAS).解:解:ACDFACDF A=DA=D(两直线平行,内错角相等)(两直线平行,内错角相等)又又AE=DBAE=DB AE+BE=DB+BE,AE+BE=DB+BE,即即AB=DE.AB=DE.在在EFDEFD和和BCABCA中中 EF=BCEF=BC()DEF=ABC DEF=ABC(全等三角形的对应角相等)(全等三角形的对应角相等)EFEFBCBC(内错角相等,两直线平行内错角相等,两直线平行)全等三角形的对应边相等全等三角形的对应边相等_ _E E_ _B B_ _A A_ _C CD D例:已知,如图例:已知,如图AB=AC,AD=AE,1=2.请判断线段请判断线段CE与

12、与BD有有什么关系?并证明你的猜想什么关系?并证明你的猜想.ACEBD21答:答:CE=BDFEDCBA如图,如图,BE,ABEF,BDEC,那么,那么ABC与与FED全等吗全等吗?为什么?为什么?解:全等。解:全等。BD=EC(已知)(已知)BDCDECCD。即即BCED在在ABC与与FED中中 ABCFED(SAS)AC FD吗?为什么?吗?为什么?12()34()AC FD(内错角相等,(内错角相等,两直线平行两直线平行4321补充练习:补充练习:DCBA 在在ABCABC中,中,AB=ACAB=AC,ADAD是是BACBAC的角平分线。的角平分线。那么那么BDBD与与CDCD相等吗?为

13、什么?相等吗?为什么?解:相等解:相等 理由:理由:ADAD是是BACBAC的角平分线的角平分线BADBADCADCADABABACACBADBADCADCADADADADADABDACDABDACD(SASSAS)BDBDCDCD 如如图图所示,已知所示,已知ACBD,AE,BE分分别别平分平分CAB和和DBA,点,点E在在CD上,上,试说试说明明AB,AC,BD之之间间的数量关系的数量关系.已知已知 ABC是正三角形,点是正三角形,点M是射线是射线BC上上任意一点,点任意一点,点N是射线是射线CA上任意一点,且上任意一点,且BM=CN,直线,直线BN与与AM相交于点相交于点Q,就下,就下面给出的三种情况(图面给出的三种情况(图1,图,图2,图,图3),先),先用量角器分别测量用量角器分别测量 BQM的大小,然后猜测的大小,然后猜测 BQM等于多少度?并利用图等于多少度?并利用图3说明你的结说明你的结论是正确的论是正确的.ABCMNQABCMNQQNMCBAABCMNQ

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服