ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:466.54KB ,
资源ID:2322792      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2322792.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021-2022学年高中数学-第二章-解三角形-1.2-余弦定理课时素养评价北师大版必修5.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021-2022学年高中数学-第二章-解三角形-1.2-余弦定理课时素养评价北师大版必修5.doc

1、2021-2022学年高中数学 第二章 解三角形 1.2 余弦定理课时素养评价北师大版必修52021-2022学年高中数学 第二章 解三角形 1.2 余弦定理课时素养评价北师大版必修5年级:姓名:2.1.2 余弦定理课时素养评价(20分钟35分)1.设ABC中内角A,B,C所对的边分别为a,b,c.若a+c=2b,3sin B=5sin A,则C=()A.B.C.D.【解析】选B.因为3sin B=5sin A,所以由正弦定理可得3b=5a,所以a=b.因为a+c=2b,所以c=,所以cos C=-,因为C(0,),所以C=.【补偿训练】在ABC中,sin2A-sin2C-sin2B=sin

2、Csin B,则A等于()A.60B.45C.120D.30【解析】选C.由正弦定理得a2-c2-b2=bc,结合余弦定理得cos A=-,又A(0,),所以A=120.2.在ABC中,角A,B,C所对的边分别为a,b,c,下列结论不正确的是()A.a2=b2+c2-2bccos AB.asin B=bsin AC.a=bcos C+c cos BD.acos B+bcos A=sin C【解析】选D.选项A,是余弦定理,所以该选项正确;选项B,实际上是正弦定理=的变形,所以该选项是正确的;选项C,由于sin A=sin(B+C),所以sin A=sin Bcos C+cos Bsin C,所

3、以a=bcos C+ccos B,所以该选项正确;选项D,acos B+bcos A=2R(sin Acos B+sin Bcos A)=2Rsin C(R为ABC的外接圆半径),不一定等于sin C,所以该项是错误的.3.在ABC中,a,b,c为角A,B,C的对边,且b2=ac,则B的取值范围是()A.B.C.D.【解析】选A.cos B=+,因为0B,所以B.4.已知在ABC中,AB=7,BC=5,CA=6,则=.【解析】在ABC中,分别用a,b,c表示边BC,CA,AB,则=cacos B=ca=(a2+c2-b2)=(52+72-62)=19.答案:195.已知锐角三角形的边长分别为1

4、,3,a,则a的范围是.【解析】只需让3和a所对的边均为锐角即可.故解得2a.答案:2a6.在ABC中,若ccos B=bcos C,cos A=.(1)求sin B的值.(2)若b=2,求a.【解析】方法一:(1)由ccos B=bcos C,结合正弦定理得sin Ccos B=sin Bcos C,故sin(B-C)=0,因为0B,0C,所以-B-C,所以B-C=0,B=C,故b=c.因为cos A=,所以由余弦定理得3a2=2b2,再由余弦定理得cos B=,故sin B=.(2)由(1)知b=c=2,所以a2=b2+c2-2bccos A=4+4-222=,则a=.方法二:(1)由余弦

5、定理和ccos B=bcos C得c=b,化简得b=c,cos A=,故3a2=2b2,即a=b,又由cos A=,知sin A=,由正弦定理得sin B=.(2)因为cos A=,所以sin A=,由正弦定理得a=.(30分钟60分)一、选择题(每小题5分,共25分)1.在ABC中,a,b,c分别是角A,B,C的对边,且cos2=,则ABC是()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形【解析】选A.因为cos2=及2cos2-1=cos A,所以cos A=,即=,所以a2+b2=c2,则ABC是直角三角形.2.已知ABC的内角A,B,C所对的边分别为a,b,

6、c,且a=2,=,则A=()A.B.C.D.【解析】选B.因为=,所以由正弦定理得=,化简得b2+c2-a2=bc,所以cos A=.又因为0A0,所以sin B-cos B=0,即tan B=,解得B=,由余弦定理得b2=a2+c2-2acosB=a2+c2-ac=(a+c)2-3ac=(a+c)2-3b2,即4b2=(a+c)2,解得=2.二、填空题(每小题5分,共15分)6.在ABC中,A,B,C所对的边分别为a,b,c.若c=b,cos B=cos C,a=,则SABC=.【解析】因为cos B=cos C,所以=,结合c=b,化简得a=b,从而有b2+c2=a2,即ABC为直角三角形

7、,将c=b,a=代入b2+c2=a2,得b=1,于是c=,所以SABC=bc=.答案:【补偿训练】在ABC中,角A,B,C的对边分别为a,b,c.若a2=b2+c2,则的值为.【解析】因为a2=b2+c2,所以b2=a2-c2.所以cos B=.所以=.答案:7.在ABC中,角A,B,C的对边分别为a,b,c,且a=3,b=4,c=6,则bccos A+accos B+abcos C的值是.【解析】因为cos A=,所以bccos A=(b2+c2-a2).同理accos B=(a2+c2-b2),abcos C=(a2+b2-c2),所以bccos A+accos B+abcos C=(a2

8、+b2+c2)=.答案:8.若ABC为钝角三角形,三边长分别为2,3,x,则x的取值范围是.【解析】若x3,则x所对角的余弦值x,解得x5.若x3,则3所对角的余弦值3,解得1x.故x的取值范围是(1,)(,5).答案:(1,)(,5)三、解答题(每小题10分,共20分)9.在ABC中,角A,B,C的对边分别为a,b,c,已知(a+b)(a-b)=c(c-b).(1)求角A的大小;(2)若a=bcos C,c=2,求ABC的面积S.【解析】(1)由a2-b2=c2-bc,可得cos A=,又A(0,),所以A=.(2)由正弦定理得sin A=sin(B+C)=sin Bcos C,即cos B

9、sin C=0.因为sin C0,故cos B=0,所以B=,又c=2,所以a=2,所以S=2.10.(2020全国卷)ABC中,sin2A-sin2B-sin2C=sin Bsin C.(1)求A;(2)若BC=3,求ABC周长的最大值.【解析】(1)因为sin2A-sin2B-sin2C=sin Bsin C,所以由正弦定理得:BC2-AC2-AB2=ACAB,所以cos A=-,因为A(0,),所以A=.(2)由(1)知A=,又BC=3,所以由余弦定理得:BC2=AC2+AB2-2ACABcos A=AC2+AB2+ACAB=9,即(AC+AB)2-ACAB=9.因为ACAB(当且仅当A

10、C=AB时取等号),所以9=(AC+AB)2-ACAB(AC+AB)2-=(AC+AB)2,解得:AC+AB2(当且仅当AC=AB时取等号),所以ABC的周长=AC+AB+BC3+2,所以ABC周长的最大值为3+2.1.在ABC中,内角A,B,C所对的边分别为a,b,c,S为ABC的面积,sin(A+C)=,且A,B,C成等差数列,则C的大小为.【解析】在ABC中,由A,B,C成等差数列,可得2B=A+C=-B,即B=,sin(A+C)=,即为sin B=,即有b2=c2+ac,由余弦定理可得b2=a2+c2-2accos B=a2+c2-ac,即有a=2c,b=c,cos C=,又因为C为三角形的内角,所以C=.答案:2.如图,ABC的顶点坐标分别为A(3,4),B(0,0),C(c,0).(1)若c=5,求sin A的值;(2)若A为钝角,求c的取值范围.【解析】(1)因为A(3,4),B(0,0),所以AB=5,当c=5时,BC=5,所以AC= =2.由余弦定理知cos A=.因为0A,所以sin A= =.(2)因为A(3,4),B(0,0),C(c,0),所以AC2=(c-3)2+42,BC2=c2,由余弦定理得cos A=.因为A为钝角,所以cos A0,即AB2+AC2-BC20,所以52+(c-3)2+42-c2=50-6c.故c的取值范围为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服