ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:311.04KB ,
资源ID:2318055      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2318055.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021-2022学年高中数学-第1章-空间向量与立体几何-1.3-1.3.2-空间向量运算的坐标表.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021-2022学年高中数学-第1章-空间向量与立体几何-1.3-1.3.2-空间向量运算的坐标表.doc

1、2021-2022学年高中数学 第1章 空间向量与立体几何 1.3 1.3.2 空间向量运算的坐标表示学案 新人教A版选择性必修第一册2021-2022学年高中数学 第1章 空间向量与立体几何 1.3 1.3.2 空间向量运算的坐标表示学案 新人教A版选择性必修第一册年级:姓名:1.3.2空间向量运算的坐标表示学 习 任 务核 心 素 养1.掌握空间向量运算的坐标表示,并据此会判断两个向量是否共线或垂直(重点)2.掌握空间向量的模,夹角公式和两点间距离公式,并能运用这些公式解决简单几何体中的问题(重点、难点)1.通过空间向量的坐标运算及空间向量夹角及长度的学习,培养数学运算素养.2.借助利用空

2、间向量的坐标运算解决平行、垂直问题,提升数学运算及逻辑推理素养.平面向量运算的坐标表示:设a(a1,a2),b(b1,b2),A(x1,y1),B(x2,y2),则ab(a1b1,a2b2),a(a1,a2)(R),aba1b1a2b2.你能由平面向量运算的坐标表示类比得到空间向量运算的坐标表示吗?它们是否成立?为什么?知识点1空间向量运算的坐标表示设a(a1,a2,a3),b(b1,b2,b3),空间向量的坐标运算法则如下表所示:运算坐标表示加法ab(a1b1,a2b2,a3b3)减法ab(a1b1,a2b2,a3b3)数乘a(a1,a2,a3),R数量积aba1b1a2b2a3b31.空间

3、向量运算的坐标表示与平面向量的坐标表示有何联系?提示空间向量运算的坐标表示与平面向量运算的坐标表示是完全一致的1.已知空间向量m(1,3,5),n(2,2,4),则mn_,3mn_,(2m)(3n)_.(1,1,1)(5,11,19)168mn(1,3,5)(2,2,4)(1,1,1);3mn3(1,3,5)(2,2,4)(3,9,15)(2,2,4)(5,11,19);(2m)(3n)(2,6,10)(6,6,12)26(6)(6)1012168.知识点2空间向量的平行、垂直、模与夹角公式的坐标表示设a(a1,a2,a3),b(b1,b2,b3),则平行(ab)ab(b0)ab垂直(ab)a

4、bab0a1b1a2b2a3b30(a,b均为非零向量)模|a|夹角公式cosa,b2.若a(a1,a2,a3),b(b1,b2,b3),则ab一定有成立吗?提示当b1,b2,b3均不为0时,成立2.已知a(1,0,1),b(2,2,0),则a,b_.60因为ab120(2)102,|a|,|b|2,所以cosa,b,因此a,b60.知识点3向量的坐标及两点间的距离公式在空间直角坐标系中,设A(a1,b1,c1),B(a2,b2,c2),则(1)(a2a1,b2b1,c2c1);(2)dAB|.3.已知点A(x,y,z),则点A到原点的距离是多少?提示OA|.3.若点A(0,1,2),B(1,

5、0,1),则_,|_.(1,1,1)(1,1,1),|. 类型1空间向量的坐标运算【例1】(1)若向量a(1,1,x),b(1,2,1),c(1,1,1),满足条件(ca)2b2,则x_.(2)已知O为坐标原点,A,B,C三点的坐标分别是(2,1,2),(4,5,1),(2,2,3)求点P的坐标,使()(1)2ca(0,0,1x),2b(2,4,2),由(ca)2b2得2(1x)2,解得x2.(2)解(2,6,3),(4,3,1),(6,3,4)设点P的坐标为(x,y,z),则(x2,y1,z2),(),x5,y,z0,则点P的坐标为.进行空间向量的数量积坐标运算的技巧利用向量坐标运算解决问题

6、的关键是熟记向量坐标运算的法则,同时掌握下列技巧(1)在运算中注意相关公式的灵活运用,如(ab)(ab)a2b2|a|2|b|2,(ab)(ab)(ab)2等(2)进行向量坐标运算时,可以先代入坐标再运算,也可先进行向量式的化简再代入坐标运算,如计算(2a)(b),既可以利用运算律把它化成2(ab),也可以求出2a,b后,再求数量积;计算(ab)(ab),既可以求出ab,ab后,求数量积,也可以把(ab)(ab)写成a2b2后计算跟进训练1已知ab(2,2),ab(0,0),则a_,b_,ab_.(1,)(1,0,)4ab(2,2),ab(0,0),2a(2,2,2),2b(2,0,2),a(

7、1,),b(1,0,),ab1104. 类型2利用空间向量的坐标运算解决平行、垂直问题【例2】(1)已知a(3,21,1),b(1,0,2)若ab,则_;若ab,则_.(2)(对接教材P20例题)在正方体ABCDA1B1C1D1中,已知E,F,G,H分别是CC1,BC,CD和A1C1的中点求证:AB1GE,AB1EH;A1G平面EFD(1)由ab,得ab3(1)20,解得.由ab,得,且210,解得,所以.(2)证明如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系设正方体的棱长为1,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0

8、),A1(0,0,1),B1(1,0,1),C1(1,1,1)由中点坐标公式,得E,F,G,H.(1,0,1),.因为2,110,所以,即AB1GE,AB1EH.,.因为00,00,所以,所以A1GDF,A1GDE,因为DFDED,所以A1G平面EFD1判断空间向量垂直或平行的步骤(1)向量化:将空间中的垂直与平行转化为向量的垂直与平行;(2)向量关系代数化:写出向量的坐标;(3)对于a(x1,y1,z1),b(x2,y2,z2),根据x1x2y1y2z1z2是否为0判断两向量是否垂直;根据x1x2,y1y2,z1z2(R)或(x2,y2,z2都不为0)判断两向量是否平行2由空间向量垂直或平行

9、求值只需根据垂直或平行的条件建立方程(组)求解即可跟进训练2已知空间三点A(2,0,2),B(1,1,2),C(3,0,4)设a,b.(1)若|c|3,c,求c;(2)若kab与ka2b互相垂直,求k.解(1)(2,1,2)且c,设c(2,2)(R)|c|3|3,解得1.c(2,1,2)或c(2,1,2)(2)a(1,1,0),b(1,0,2),kab(k1,k,2),ka2b(k2,k,4)(kab)(ka2b),(kab)(ka2b)0,即(k1,k,2)(k2,k,4)2k2k100,解得k2或k. 类型3利用空间向量的坐标运算解决夹角和距离问题【例3】在棱长为1的正方体ABCDA1B1

10、C1D1中,E,F分别为D1D,BD的中点,点G在棱CD上,且CGCD,H为C1G的中点,应用空间向量的方法求解下列问题:(1)求EF与C1G所成角的余弦值;(2)求FH的长解建立如图所示空间直角坐标系Oxyz,则有E,F,C(0,1,0),C1(0,1,1),B1(1,1,1),G,H.(1),(0,1,1),|.又0(1),|,cos,.即异面直线EF与C1G所成角的余弦值为.(2)F,H,FH|.用空间向量的坐标运算解决夹角和距离问题的基本思路是什么?提示(1)根据条件建立适当的空间直角坐标系;(2)写出相关点的坐标,用向量表示相关元素;(3)通过向量的坐标运算求夹角和距离.跟进训练3在

11、直三棱柱ABCA1B1C1中,ACBC1,BCA90,AA12,Q为A1A的中点(1)求的长;(2)求cos,cos,并比较,的大小解建立如图所示的空间直角坐标系Oxyz.由已知,得C(0,0,0),A(1,0,0),B(0,1,0),C1(0,0,2),Q(1,0,1),B1(0,1,2),A1(1,0,2)(1,1,1),(0,1,2),(1,1,2)(1)|.(2)0121,|,|,cos,.0143,|,|,cos,.0,1已知a(1,2,1),ab(1,2,1),则b()A(2,4,2)B(2,4,2)C(2,0,2)D(2,1,3)Bb(ab)a(1,2,1)(1,2,1)(2,4

12、,2),故选B2已知向量a(0,1,1),b(4,1,0),|ab|,且0,则等于()A5B4C3D2Cab(0,1,1)(4,1,0)(4,1,),由已知得|ab|,且0,解得3.3已知M(5,1,2),A(4,2,1),O为坐标原点,若,则点B的坐标应为()A(1,3,3)B(9,1,1)C(1,3,3)D(9,1,1)B,(9,1,1)4已知a(1,x,3),b(2,4,y),若ab,则xy_.4由ab得ab,所以解得所以xy4.5已知空间三点A(1,1,1),B(1,0,4),C(2,2,3),则与的夹角的大小是_(2,1,3),(1,3,2),|,|,(2)(1)(1)33(2)7,cos,又,0,.回顾本节知识,自我完成以下问题:(1)如何用空间向量的坐标运算表示平行、垂直、模及夹角?提示设a(a1,a2,a3),b(b1,b2,b3),则当b0时 ,ababa1b1,a2b2,a3b3(R);abab0a1b1a2b2a3b30;|a|;cosa,b.(2)你是如何用空间向量的坐标运算来研究平行、垂直、夹角和距离的?提示根据条件建立适当的空间直角坐标系;求出相关点的坐标,用向量表示相关元素;通过向量的坐标运算研究平行、垂直、夹角和距离

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服