5、2 不等式的恒成立问题
【例2】 若关于x的不等式(m2-2m-3)x2-(m-3)x-1<0对任意x∈R恒成立,求实数m的取值范围.
对应的不等式是不是关于x的一元二次不等式?其对应函数的图象有何特征?如何用数学语言表述?
[解] 当m2-2m-3=0时,m=3或m=-1.
①若m=3,不等式可化为-1<0,显然对于x∈R恒成立,满足题意.
②若m=-1,不等式可化为4x-1<0,显然不满足题意.
当m2-2m-3≠0时,由题目条件,知
得
即-0,对任意实
6、数x∈R恒成立的条件是
(2)一元二次不等式ax2+bx+c≥0,对任意实数x∈R恒成立的条件是
(3)一元二次不等式ax2+bx+c<0,对任意实数x∈R恒成立的条件是
(4)一元二次不等式ax2+bx+c≤0,对任意实数x∈R恒成立的条件是
提醒:当不等式ax2+bx+c>0未说明为一元二次不等式时,对任意实数x∈R恒成立时满足的条件为或
2.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,求实数m的取值范围.
[解] ①当m2+4m-5=0,即m=1或m=-5时,显然m=1符合条件,m=-5不符合条件;
②当m2+4m-5≠0时,
7、由二次函数对一切实数x恒成立,得
解得14
A [依题意应有Δ=a2-16≤0,解得-4≤a≤4,故选A.]
3.产品
8、的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2,x∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )
A.100台 B.120台
C.150台 D.180台
C [由题设,产量x台时,总售价为25x万元,欲使生产者不亏本,必须满足总售价大于等于总成本,即25x≥3 000+20x-0.1x2,即0.1x2+5x-3 000≥0,x2+50x-30 000≥0,解之得x≥150或x≤-200(舍去).故欲使生产者不亏本,最低产量是150台.故选C.]
4.若关于x的不等式(k-1)x2+(k-1
9、)x-1<0恒成立,则实数k的取值范围是________.
{k|-30(<0)恒成立的条件.
[提示]
不等式
ax2+bx+c>0
ax2+bx+c<0
a=0
b=0,c>0
b=0,c<0
a≠0