ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:2.61MB ,
资源ID:2261504      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2261504.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2016全国卷Ⅱ高考理科数学试卷及答案(word版).doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2016全国卷Ⅱ高考理科数学试卷及答案(word版).doc

1、2016年普通高等学校招生全统一考试理科数学本试卷分第卷(选择题)和第卷(非选择题)两部分,共24题,共150分第卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1) 已知在复平面内对应的点在第四象限,则实数的取值范围是(A)(,) (B)(,) (C)(,) (D)(,)(2) 已知集合,则(A) (B) (C) (D)(3) 已知向量,且,则(A) (B) (C) (D)(4) 圆的圆心到直线的距离为1,则(A) (B) (C) (D)(5) 如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老

2、年公寓可以选择的最短路径条数为 (A)24(B)18(C)12(D)9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20 (B)24 (C)28 (D)32(7) 若将函数的图像向左平移个单位长度,则平移后图像的对称轴为(A) (B)否是输入输出开始结束输入(C) (D)(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的(A)7 (B)12 (C)17 (D)34(9) 若,则(A) (B) (C) (D)(10) 以从区间随机抽取个数,构成个数对,其中两数的平方和小于1的数对共有

3、个,则用随机模拟的方法得到的圆周率的近似值为(A) (B) (C) (D)(11) 已知是双曲线:的左,右焦点,点在上,与轴垂直,则的离心率为(A) (B) (C) (D)(12) 已知函数满足,若函数与图像的交点为,则(A) (B) (C) (D)第卷本卷包括必考题和选考题两部分。第(13)(21)题为必考题,每个试题都必须作答。第(22)(24)题为选考题,考生根据要求作答。二、填空题:本题共4小题,每小题5分。(13) 的内角的对边分别为,若,则 (14) 是两个平面,是两条直线,有下列四个命题:如果,那么如果,那么如果,那么如果,那么与所成的角和与所成的角相等其中正确的命题有 (填写所

4、有正确命题的编号)(15) 有三张卡片,分别写有1和2,1和3,2和3甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 (16) 若直线是曲线的切线,也是曲线的切线,则 三、解答题:解答应写出文字说明、证明过程或演算步骤。(17) (本小题满分12分)为等差数列的前项和,且记,其中表示不超过的最大整数,如,.()求;()求数列的前1000项和.(18) (本小题满分12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人

5、的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数保 费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数概 率()求一续保人本年度的保费高于基本保费的概率;()若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;()求续保人本年度的平均保费与基本保费的比值(19) (本小题满分12分)如图,菱形的对角线与交于点,点分别在上,交于点.将沿折到的位置,.()证明:平面;()求二面角的正弦值(20) (本小题满分12分) 已知是椭圆:的左顶点,斜率为的直线交于两点,点在上,.()当,时,求的面积;()当时,求的取值范围.(21) (本小题满分12分)()讨论

6、函数的单调性,并证明当时,;()证明:当时,函数有最小值设的最小值为,求函数的值域请考生在第(22)(24)题中任选一题作答,如果多做,则按所做的第一题计分。(22) (本小题满分10分)选修4-1:几何证明选讲 如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为.()证明:四点共圆;()若,为的中点,求四边形的面积.(23) (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,圆的方程为.()以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;()直线的参数方程是(为参数),与交于两点,求的斜率.(24) (本小题满分10分)选修4-5:不等式选讲 已知函

7、数,为不等式的解集.()求;()证明:当时,.2016年全国卷高考数学(理科)答案一.选择题:(1)A (2)C (3)D (4)A (5)B (6)C(7)B (8)C (9)D (10)C (11)A (12)C二、填空题(13) (14) (15)1和3 (16)三.解答题(17)(本题满分12分)()设的公差为,据已知有,学.科.网解得所以的通项公式为()因为所以数列的前项和为(18)(本题满分12分)()设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故()设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大

8、于3,故又,故因此所求概率为 ()记续保人本年度的保费为,则的分布列为因此续保人本年度的平均保费与基本保费的比值为(19)(本小题满分12分)(I)由已知得,又由得,故.因此,从而.由,得.由得.所以,.于是,故.又,而,所以.(II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是, .因此二面角的正弦值是.(20)(本小题满分12分)(I)设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,所以.因此的面积.(II)由题意,.将直线的方

9、程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.(21)(本小题满分12分)()的定义域为.且仅当时,所以在单调递增,因此当时,所以(II)由(I)知,单调递增,对任意因此,存在唯一使得即,当时,单调递减;当时,单调递增.因此在处取得最小值,最小值为于是,由单调递增所以,由得因为单调递增,对任意存在唯一的使得所以的值域是综上,当时,有,的值域是(22)(本小题满分10分)(I)因为,所以则有所以由此可得由此所以四点共圆.(II)由四点共圆,知,连结,由为斜边的中点,知,故因此四边形的面积是面积的2倍,即(23)(本小题满分10分)(I)由可得的极坐标方程(II)在(I)中建立的极坐标系中,直线的极坐标方程为由所对应的极径分别为将的极坐标方程代入的极坐标方程得于是由得,所以的斜率为或.(24)(本小题满分10分)(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,试题解析:(I)当时,由得解得;当时, ;当时,由得解得.所以的解集.(II)由(I)知,当时,从而,因此理科数学试卷 第11页(共5页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服