ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:54.65KB ,
资源ID:2238288      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2238288.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021-2022学年高中数学-第6章-平面向量及其应用-6.4.3-第3课时-习题课—余弦定理和正.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021-2022学年高中数学-第6章-平面向量及其应用-6.4.3-第3课时-习题课—余弦定理和正.docx

1、2021-2022学年高中数学 第6章 平面向量及其应用 6.4.3 第3课时 习题课余弦定理和正弦定理的综合应用巩固练习新人教A版必修第二册2021-2022学年高中数学 第6章 平面向量及其应用 6.4.3 第3课时 习题课余弦定理和正弦定理的综合应用巩固练习新人教A版必修第二册年级:姓名:6.4.3余弦定理、正弦定理第3课时习题课余弦定理和正弦定理的综合应用课后训练巩固提升一、A组1.在ABC中,c=2,A=30,B=120,则ABC的面积为()A.32B.3C.33D.3解析:C=180-30-120=30,a=c=2,面积S=12acsinB=1222sin120=3.答案:B2.已

2、知三角形的面积为14,其外接圆的面积为,则这个三角形的三边之积为()A.1B.2C.12D.4解析:由题意得,外接圆的半径R=1,S=12absinC=12abc2R=abc4=14.故abc=1.答案:A3.在ABC中,c=3,b=1,B=30,则ABC的面积为()A.32或3B.32或34C.3或34D.3解析:由正弦定理,得sinC=csinBb=32,B=30,0C0).由正弦定理得7xsinC=8xsinB.sinC=7xsinB8x=78437=32.ABAC,CB,C=60.由余弦定理得,(7x)2=(8x)2+152-28x15cos60,x2-8x+15=0,解得x=3或x=

3、5.AB=21,AC=24或AB=35,AC=40.在ABD中,AD=ABsinB=437AB,AD=123或AD=203.10.在ABC中,角A,B,C的对边分别为a,b,c,且满足bcos A=(2c+a)cos(-B).(1)求B的大小;(2)若b=4,ABC的面积为3,求a+c的值.解:(1)由正弦定理及bcosA=(2c+a)cos(-B),得sinBcosA=(2sinC+sinA)(-cosB),即sinBcosA+cosBsinA=-2sinCcosB,sin(B+A)=-2sinCcosB.又B+A=-C,sinC=-2sinCcosB,又sinC0,cosB=-12.0B,

4、B=23.(2)由SABC=12acsinB=12ac32=3得ac=4.由余弦定理得42=a2+c2-2accos23,16=(a+c)2+ac,(a+c)2=12,a+c=23.二、B组1.已知钝角三角形ABC的面积为12,AB=1,BC=2,则AC=()A.5B.5C.2D.1解析:SABC=12ABBCsinB=12,sinB=22.又B为ABC的内角,B=45或B=135.若B=45,则由余弦定理得AC2=AB2+BC2-2ABBCcosB=1+2-2222=1,ABC为直角三角形,不合题意,舍去,B=135,由余弦定理得AC2=AB2+BC2-2ABBCcosB=1+2-212-2

5、2=5,AC=5.答案:B2.在ABC中,a=1,B=45,SABC=2,则ABC外接圆的半径为()A.23B.42C.522D.32解析:SABC=12acsinB=12csin45=24c.SABC=2,c=42.由余弦定理得,b2=a2+c2-2accosB=1+32-214222=25,b=5.又bsinB=2R,R=b2sinB=52sin45=522.答案:C3.在ABC中,sin A=sinB+sinCcosB+cosC,则ABC的形状为()A.直角三角形B.等边三角形C.等腰三角形D.等腰或直角三角形解析:(方法一)sinA=sinB+sinCcosB+cosC,又A+B+C=

6、,sinAcosB+sinAcosC=sin(A+C)+sin(A+B),sinAcosB+sinAcosC=sinAcosC+cosAsinC+sinAcosB+cosAsinB,cosA(sinC+sinB)=0,又sinC+sinB0,cosA=0,0A,A=2,ABC为直角三角形.(方法二)由正弦定理、余弦定理及题设条件可得a=b+ca2+c2-b22ac+a2+b2-c22ab,化简得(b+c)(b2+c2-a2)=0,又b+c0,b2+c2-a2=0,b2+c2=a2,ABC为直角三角形.答案:A4.我国南宋著名数学家秦九韶发现了与海伦公式等价的由三角形三边求面积的公式,他把这种方

7、法称为“三斜求积”.求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.若把以上这段文字写出公式,即为S=14c2a2-c2+a2-b222.现有周长为22+5的ABC满足sin Asin Bsin C=(2-1)5(2+1),试用以上给出的公式求得面积为()A.34B.32C.54D.52解析:由正弦定理得sinAsinBsinC=abc.sinAsinBsinC=(2-1)5(2+1),可设a=(2-1)x,b=5x,c=(2+1)x,(2-1)x+5x+(2+1)x=22+5,解得x=1,a=2-1,b=5,c=2+1,S=34

8、.答案:A5.如图所示,一块三角形土地ABC,AD是一条小路,BC=5 m,AC=4 m,cosCAD=3132,AD=BD,则该土地的面积是 m2.解析:设CD=xm,则AD=BD=(5-x)m.在CAD中,由余弦定理,可知cosCAD=(5-x)2+42-x224(5-x)=3132,解得x=1.CD=1m,AD=BD=4m.在CAD中,由正弦定理,可知ADsinC=CDsinCAD,sinC=ADCD1-cos2CAD=41-31322=378.SABC=12ACBCsinC=1245378=1574(m2).答案:15746.在ABC中,内角A,B,C的对边分别是a,b,c,若c2=(

9、a-b)2+6,ABC的面积为323,则C=.解析:c2=(a-b)2+6=a2+b2-2ab+6,又由余弦定理得c2=a2+b2-2abcosC,2ab-6=2abcosC,ab=31-cosC,SABC=12absinC=3sinC2(1-cosC)=332,3-3cosC=sinC,sin(C+60)=32,又C为ABC的内角,C=60.答案:607.如图,在ABC中,ABC=90,AB=3,BC=1,P为ABC内一点,BPC=90.(1)若PB=12,求PA;(2)若APB=150,求tanPBA.解:(1)由已知得PBC=60,所以PBA=30.在PBA中,由余弦定理,得PA2=3+

10、14-2312cos30=74.故PA=72.(2)设PBA=,则PCB=PBA=,由已知得PB=sin.在PBA中,由正弦定理,得3sin150=sinsin(30-),化简得3cos=4sin.所以tan=34,即tanPBA=34.8.已知ABC的内角A,B,C所对的边分别为a,b,c,向量m=(b,-3a)与n=(cos A,sin B)垂直.(1)求A;(2)若B+12=A,a=2,求ABC的面积.解:(1)mn,mn=bcosA-3asinB=0,即bcosA=3asinB.由正弦定理得sinBcosA=3sinAsinB.又sinB0,cosA=3sinA,tanA=33,又0A,A=6.(2)由B+12=A及(1)得B=12,C=-6-12=34,由正弦定理得c=asinCsinA=2sin34sin6=22,SABC=12acsinB=12222sin12=22sin4-6=222232-2212=3-1.ABC的面积为3-1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服