ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:20.58KB ,
资源ID:2235032      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2235032.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学-第二章-数列-2.2-等差数列(二)导学案-新人教A版必修5.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学-第二章-数列-2.2-等差数列(二)导学案-新人教A版必修5.docx

1、高中数学 第二章 数列 2.2 等差数列(二)导学案 新人教A版必修5高中数学 第二章 数列 2.2 等差数列(二)导学案 新人教A版必修5年级:姓名: 2.2等差数列(二)【教学目标】1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质解决有关问题【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看2.2等差数列(二)课件“复习回顾”部分,对上节课的内容进行简单回顾,从而引出本节课的学习内容.二、自主学习教材整理等差数列的性质阅读教材P39探究及练习第4,5题,完成下列问题1等差数列的图象等差数列的通项公式ana1(n1)d,当d0时,an是一固

2、定常数;当d0时,an相应的函数是一次函数;点(n,an)分布在以d为斜率的直线上,是这条直线上的一列孤立的点2等差数列的性质(1)an是公差为d的等差数列,若正整数m,n,p,q满足mnpq,则amanapaq.特别地,当mn2k(m,n,kN*)时,aman2ak.对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1ana2an1akank1.(2)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列(3)若an是公差为d的等差数列,则can(c为任一常数)是公差为d的等差数列;can(c为任一常数)是公差为cd的等差数列;anank(k为常数,kN*)是公差为2

3、d的等差数列(4)若an,bn分别是公差为d1,d2的等差数列,则数列panqbn(p,q是常数)是公差为pd1qd2的等差数列(5)an的公差为d,则d0an为递增数列;d1),求差得anan1(pnq)p(n1)qpnq(pnpq)p.它是一个与n无关的常数,所以an是等差数列由于anpnqqp(n1)p,所以首项a1pq,公差dp.名师点评:本题可以按照解析几何中的直线问题求解,但是,如果换个角度,利用构造等差数列模型来解决,更能体现出等差数列这一函数特征,这种解答方式的转变,同学们要在学习中体会,在体会中升华探究点3等差数列性质的应用例3已知等差数列an中,a1a4a715,a2a4a

4、645,求此数列的通项公式提示:方法一因为a1a72a4,a1a4a73a415,所以a45.又因为a2a4a645,所以a2a69,即(a42d)(a42d)9,(52d)(52d)9,解得d2.若d2,ana4(n4)d2n3;若d2,ana4(n4)d132n.方法二设等差数列的公差为d,则由a1a4a715,得a1a13da16d15,即a13d5,由a2a4a645,得(a1d)(a13d)(a15d)45,将代入上式,得(a1d)5(52d)45,即(a1d)(52d)9,解,组成的方程组,得a11,d2或a111,d2,即an12(n1)2n3或an112(n1)2n13.引申探

5、究1在例3中,不难验证a1a4a7a2a4a6,那么,在等差数列an中,若mnpqrs,m,n,p,q,r,sN*,是否有amanapaqaras?提示:设公差为d,则ama1(m1)d,ana1(n1)d,apa1(p1)d,aqa1(q1)d,ara1(r1)d,asa1(s1)d,amanap3a1(mnp3)d,aqaras3a1(qrs3)d,mnpqrs,amanapaqaras.2在等差数列an中,已知a3a810,则3a5a7_.提示:a3a810,a3a3a8a820.33885557,a3a3a8a8a5a5a5a7,即3a5a72(a3a8)20.名师点评:解决等差数列运

6、算问题的一般方法:一是灵活运用等差数列an的性质;二是利用通项公式,转化为等差数列的首项与公差的求解,属于通项方法;或者兼而有之这些方法都运用了整体代换与方程的思想四、当堂检测1在等差数列an中,已知a310,a820,则公差d等于()A3 B6 C4 D32在等差数列an中,已知a42,a814,则a15等于()A32 B32 C35 D353在等差数列an中,已知a4a515,a712,则a2等于()A3 B3 C. D提示:1B2.C3.A五、课堂小结本节课我们学习过哪些知识内容?提示:1等差数列an中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列2在等差数列an中,首项a1与公差d是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a1,d的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服