1、高中数学 第二章 数列 2.2 等差数列(二)导学案 新人教A版必修5高中数学 第二章 数列 2.2 等差数列(二)导学案 新人教A版必修5年级:姓名: 2.2等差数列(二)【教学目标】1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质解决有关问题【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看2.2等差数列(二)课件“复习回顾”部分,对上节课的内容进行简单回顾,从而引出本节课的学习内容.二、自主学习教材整理等差数列的性质阅读教材P39探究及练习第4,5题,完成下列问题1等差数列的图象等差数列的通项公式ana1(n1)d,当d0时,an是一固
2、定常数;当d0时,an相应的函数是一次函数;点(n,an)分布在以d为斜率的直线上,是这条直线上的一列孤立的点2等差数列的性质(1)an是公差为d的等差数列,若正整数m,n,p,q满足mnpq,则amanapaq.特别地,当mn2k(m,n,kN*)时,aman2ak.对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1ana2an1akank1.(2)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列(3)若an是公差为d的等差数列,则can(c为任一常数)是公差为d的等差数列;can(c为任一常数)是公差为cd的等差数列;anank(k为常数,kN*)是公差为2
3、d的等差数列(4)若an,bn分别是公差为d1,d2的等差数列,则数列panqbn(p,q是常数)是公差为pd1qd2的等差数列(5)an的公差为d,则d0an为递增数列;d1),求差得anan1(pnq)p(n1)qpnq(pnpq)p.它是一个与n无关的常数,所以an是等差数列由于anpnqqp(n1)p,所以首项a1pq,公差dp.名师点评:本题可以按照解析几何中的直线问题求解,但是,如果换个角度,利用构造等差数列模型来解决,更能体现出等差数列这一函数特征,这种解答方式的转变,同学们要在学习中体会,在体会中升华探究点3等差数列性质的应用例3已知等差数列an中,a1a4a715,a2a4a
4、645,求此数列的通项公式提示:方法一因为a1a72a4,a1a4a73a415,所以a45.又因为a2a4a645,所以a2a69,即(a42d)(a42d)9,(52d)(52d)9,解得d2.若d2,ana4(n4)d2n3;若d2,ana4(n4)d132n.方法二设等差数列的公差为d,则由a1a4a715,得a1a13da16d15,即a13d5,由a2a4a645,得(a1d)(a13d)(a15d)45,将代入上式,得(a1d)5(52d)45,即(a1d)(52d)9,解,组成的方程组,得a11,d2或a111,d2,即an12(n1)2n3或an112(n1)2n13.引申探
5、究1在例3中,不难验证a1a4a7a2a4a6,那么,在等差数列an中,若mnpqrs,m,n,p,q,r,sN*,是否有amanapaqaras?提示:设公差为d,则ama1(m1)d,ana1(n1)d,apa1(p1)d,aqa1(q1)d,ara1(r1)d,asa1(s1)d,amanap3a1(mnp3)d,aqaras3a1(qrs3)d,mnpqrs,amanapaqaras.2在等差数列an中,已知a3a810,则3a5a7_.提示:a3a810,a3a3a8a820.33885557,a3a3a8a8a5a5a5a7,即3a5a72(a3a8)20.名师点评:解决等差数列运
6、算问题的一般方法:一是灵活运用等差数列an的性质;二是利用通项公式,转化为等差数列的首项与公差的求解,属于通项方法;或者兼而有之这些方法都运用了整体代换与方程的思想四、当堂检测1在等差数列an中,已知a310,a820,则公差d等于()A3 B6 C4 D32在等差数列an中,已知a42,a814,则a15等于()A32 B32 C35 D353在等差数列an中,已知a4a515,a712,则a2等于()A3 B3 C. D提示:1B2.C3.A五、课堂小结本节课我们学习过哪些知识内容?提示:1等差数列an中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列2在等差数列an中,首项a1与公差d是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a1,d的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量