ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:328.50KB ,
资源ID:2223249      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2223249.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(垂直于弦的直径-优秀教案.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

垂直于弦的直径-优秀教案.doc

1、2412 垂直于圆的直径授课题目:垂直于圆的直径 课型:新授课授课对象:九年级学生 授课学时:1课时 (45分钟) 参考教材:义务教育课程标准实验教材书数学九年级上册(人民教育出版社)一、教材分析1、作为圆这章的第一个重要性质,它研究的是垂直于弦的直径和这弦的关系。2、该性质是圆的轴对称性的演绎,也是今后证明圆中线段相等、角相等、弧相等、垂直关系的重要依据,同时为后面圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的作用。二、教学目标1、知识目标:(1)充分认识圆的轴对称性。(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。(3)运用垂径定理进行简单的证明、计算和作图。2、

2、能力目标:让学生经历“实验观察猜想验证归纳”的研究过程,培养学生动手实践、观察分析、归纳问题和解决问题的能力。让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。3、情感目标:通过实验操作探索数学规律,激发学生的好奇心和求知欲,同时培养学生勇于探索的精神。三、教学关键圆的轴对称性的理解四、教学重点垂直于弦的直径的性质及其应用。五、教学难点1、垂径定理的证明。2、垂径定理的题设与结论的区分。六、教学辅助多媒体、可折叠的圆形纸板。七、教学方法本节课采用的教学方法是“主体探究式”。整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。令学生参

3、与到“实验-观察-猜想-验证-归纳”的活动中,与教师共同探究新知识最后得出定理。学生不再是知识的接受者,而是知识的发现者,是学习的主人。八、教学过程:教学环节创设情境回顾旧识引入新课揭示课题师生互动探求新知概念辨析运用新知拓展升华快速判定归纳小结分层作业教学时间3分钟5分钟9分钟20分钟4分钟4分钟教学环节教师活动学生活动设计目的情景创设情景创设(1分钟)情景问题:赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?(ppt)把一些实际问题转化为数学问题思考:若用直角三角形解决,那么E是否为AB中点?从实际出发,充分发现问题的

4、存在,再带着问题去思考它们之间的关系,有助于定理的得出。回顾旧识回顾旧识(2分钟)我们已经学习过对称的有关概念,下面复习两道问题1)什么是轴对称图形?2)我们学习过的轴对称图形有哪些?(电脑上直观的动画演示,运用几何画板演示沿上述图形对称轴对折图形的动画)学生观察一些图形:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形。通过复习,强化学生本节课所需要的相关知识,为学生自主探索垂径定理做奠基。引入新课引入新课(4分钟)问:(1)我们所学的圆是不是轴对称图形? (2)如果是,它的对称轴是什么?拿出一张圆形纸片,

5、沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?:(1)圆是轴对称图形。(2)对称轴是过圆点的直线(或任何一条直径所在的直线)(3)圆的对称轴有无穷多条实验:把圆形纸片沿着圆的任意一条直径对折,重复做几次观察:两部分重合,发现得出圆的对称性的结论培养学生的动手能力,观察能力,通过比较,运用旧知识探索新问题揭示课题揭示课题(1分钟)电脑上用几何画板上作图:(1)做一圆(2) 在圆上任意作一条弦 AB;(3) 过圆心作AB的垂线的直径CD且交AB于E。(板书课题:垂直于弦的直径)在圆形纸片上作一条弦AB,过圆心作AB的垂线的直径CD且交AB于E师生互动师生互动(4分钟)运

6、用几何画板展示直径与弦垂直相交时圆的翻折动画让学生观察,讨论(1)图中圆可能会有哪些等量关系?(2)弦AB与直径CD除垂直外还有什么性质?实验:将圆沿直径CD对折观察:图形重合部分,思考图中的等量关系猜想: AE=EB、弧AC=弧CB、弧AD=弧DB(电脑显示)垂直于弦的直径平分弦,并且平分弦所对的两条弧?引导学生通过“实验-观察-猜想”,获得感性认识,猜测出垂直于弦的直径的性质探求新知探求新知(5分钟)提问:这个结论是同学们通过演示观察猜想出来的,结论是否正确还要从理论上证明它,下面我们试着来证明它已知:CD是O的直径,AB是弦,ABCD证明:AE=EB、弧AC=弧CB、弧AD=弧DB(垂径

7、定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。垂径定理的逆定理:平分弦的直径垂直于弦,并且垂直于弦所对的两条弧)探索:证明:连结OA、OB,则OAOB,又OEABOAEOBE 则AE=BECD所在的直线垂直平分弦AB当把O沿着直径CD折叠时, A点和B点重合所以E=EB、弧AC=弧CB、弧AD=弧DB让学生自主探究,大胆求证猜想发展思维能力,归纳结果概念辨析概念辨析(2分钟)(电脑显示)练习1 AE=EB吗? (1) (2) (3)注意:直径,垂直于弦,缺一不可!图(1)直径不垂直弦图(2)垂直弦的不是直径图(3)AB为弦,CD为直径,ABCD满足垂径定理运用定理变式练习揭示定理本质属性

8、,强调垂径定理两个条件运用新知运用新知(18分钟)练习1:(5分钟)一条排水管的截面如图所示。已知排水管的半径OB=10,水面宽AB=16。求截面圆心O到水面的距离。在学生发表见解的情况下总结归纳:(1)圆中有关弦、半径的计算问题通常利用垂径定理来解决。(2)重要的辅助线:过圆心做弦的垂线构造直角三角形,结合垂径定理与解直角三角形的有关知识解题。总结口诀:半径半弦弦心距,化为勾股最容易,另外加上弓形高,三角形少不了学生总结归纳解题思路,在练习本作,电脑显示解::作OCAB于C, 由垂径定理得:AC=BC= AB= 16=8 由勾股定理得:答:截面圆心O到水面的距离为6.这是一道计算题,是垂径定

9、理的简单应用,可调动学生积极性,让学生通过归纳探究,使知识点有机的结合在一起,使其更深入地掌握定理的内涵,培养他们思维的严谨性和深刻性,提高分析和归纳的能力。练习2(5分钟) (情景问题)赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?(练习本做、电脑显示)解:如图,设半径为R在tAOD中,由勾股定理,得解得 R27.9(m)答:赵州桥的主桥拱半径约为27.9m练习上一结束后,返回情景问题,解决这道之前不能完成的题目,体会成功的乐趣,发展思维能力,富有成就感。练习3:(3分钟)已知:如图,在以O为圆心的两个同心圆中,大圆的

10、弦AB交小圆于C,D两点。求证:ACBD。注意:作辅助线(学生识图、练习本做、电脑显示)证明:过O作OEAB,垂足为E,则AEBE,CEDE。AECEBEDE。所以,ACBD这是证明线段相等的变式题,增强学生的识图能力,揭示解决问题的方法过圆心向弦做垂线,利用垂径定理来解决一系列类似问题。练习4(5分钟)出示分层训练:如图1,已知AB、CD是圆O的两条弦,OE、OF分别为AB、CD的弦心距,如果AB=CD,则可得出什么结论(至少写出两个)?并证明。已知如图2:在O中,AB、AC为互相垂直的两条相等的弦,ODAB,OEAC,D、E为垂足。求证:四边形ADOE为正方形。如图3,不过圆心的直线L交O

11、 于CD,AB是O 直径。AE、BF分别垂直于L ,垂足是E、F。求证:CE=DF若AB与CD相交,的结论还成立吗? 图1 图2 图3 全班同学分层完成,每组同学完成自己题目后可做高一层的题目调整难度和梯度,让所有学生均有所收获,让学生充分认识到垂径定理是证明线段相等的依据。拓展升华(3分钟)如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换或交换一条,命题是真命题吗?(1)过圆心 (2)垂直于弦 (3)平分弦(4)平分弦所对的优弧 (5)平分弦所对的劣弧上述五个条件中的任何两个条件都可以推出其他三个结论学生自主探证通过问题,引导学生拓展思维,发现新目标快速判断快速判

12、断(1分钟)(1)垂直于弦的直线平分弦,并且平分弦所对的弧.( )(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心.( )(3)圆的不与直径垂直的弦必不被这条直径平分.( )(4)平分弦的直径垂直于弦,并且平分弦所对的两条弦( )(5)圆内两条非直径的弦不能互相平分( )巩固拓展知识归纳小结归纳小结(3分钟)由学生小结,电脑显示知识总结:这节课我们主要学习了两个问题:一是圆的轴对称性(学生回答),它是理解和证明定理的关键;二是垂径定理(学生回答),它是这节课的重点要求大家分清楚定理的条件和结论,并熟练掌握定理的简单应用,还推知它的里定理。另外它的其他推论级应用我们下节课探讨。讲评总结:1学

13、习垂径定理后,你认为应该注意哪些问题?2应用垂径定理如何添辅助线?垂径定理有哪些应用3这节课的学习你有什么疑问?4这节课的学习方式拟喜欢吗?你有什么好的建议?讲评回答回顾这节课的内容,加深学生对知识的印象,反馈学生这节课收获节疑问,使教学效果得到提高分层作业分层作业(1分钟)1、.必做题:习题24.11,7,82.、选做题:习题24.113作业题分层给出,调动学生学习积极性,提高学生思维的广度,培养学生良好的学习习惯及思维品质,让学有余力的学生进一步的提高九、板书设计(1)圆是轴对称图形。(2)对称轴是过圆点的直线(或任何一条直径所在的直线)(3)圆的对称轴有无穷多条24.1.2 垂直于垂径定理:垂径定理逆定理:弦的直径垂径定理证明:方法归纳:技巧:重要辅助线是过圆心作弦的垂线。重要思路:(由)垂径定理构造Rt(结合)勾股定理建立方程 构造Rt的“七字口诀”:半径半弦弦心距9 / 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服