ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:1.87MB ,
资源ID:2197460      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2197460.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021年高考数学模拟试题.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021年高考数学模拟试题.doc

1、2021年高考数学模拟试题2021年高考数学模拟试题年级:姓名:2021年高考数学真题一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】首先求出集合,然后再利用集合的交运算即可求解.【详解】由集合,所以.故选:B【点睛】本题考查了集合的交运算、一元二次不等式的解法,属于基础题.2.已知复数为纯虚数(其中i为虚数单位),则实数( )A. B. 3C. D. 【答案】A【解析】【分析】化简复数的代数形式,根据复数为纯虚数,列出方程组,即可求解.【详解】由题意,复数,因为复

2、数为纯虚数,可得,解得.故选:A.【点睛】本题主要考查了复数的除法运算,以及复数的分类及其应用,着重考查计算能力,属于基础题.3.己知,则下列各式成立的是( )A. B. C. D. 【答案】C【解析】【分析】根据指数函数和对数函数的单调性和特殊值法,逐一对选项进行判断即可.【详解】解:对于选项:因为函数在上单调递增,所以时,故选项错误;对于选项:因为在单调递增函数,所以,故选项正确;对于选项:因为,可取,此时,所以,故选项错误;对于选项:因为,可取,此时,所以,故选项错误.故选:C.【点睛】本题主要考查利用对数函数与指数函数的单调性比较大小,属于基础题.4.易系辞上有“河出图,洛出书”之说,

3、河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源.河图的排列结构如图所示,一与六共宗居下,二与七为朋居上,三与八同道居左,四与九为友居右,五与十相守居中,其中白圈为阳数,黑点为阴数,若从阳数和阴数中各取一数,则其差的绝对值为5的概率为( )A. B. C. D. 【答案】A【解析】【分析】根据阳数为1,3,5,7,9;阴数为2,4,6,8,10,利用古典概型概率求法求解.【详解】阳数为1,3,5,7,9;阴数为2,4,6,8,10,从阳数和阴数中各取一数的所有组合共有个,满足差的绝对值为5的有,共5个,则其差的绝对值为5的概率为.

4、故选:A.【点睛】本题主要考查古典概型的概率求法,还考查了分析求解问题的能力,属于基础题.5.函数的部分图象大致是( )A. B. C. D. 【答案】C【解析】【分析】判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,时,排除,当时, 时,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.6.已知函数是定义在上的奇函数,当0时,则( )A. 3B. -3C. -2D. -1【答案】B【解析】【分析】由,可求,代入可求,然后结合奇函数的定义得

5、,进而求得的值.【详解】是定义在上的奇函数,且时,则.故选:B.【点睛】本题考查奇函数性质,即若函数为奇函数且在有定义,则,理解这一知识点是求解本题的关键7.如图,已知双曲线的左、右焦点分别为、,过右焦点作平行于一条渐近线的直线交双曲线于点,若的内切圆半径为,则双曲线的离心率为( )A. B. C. D. 【答案】C【解析】【分析】设双曲线的左、右焦点分别为,设双曲线的一条渐近线方程为,可得直线的方程为,联立双曲线的方程可得的坐标,设,运用三角形的等积法,以及双曲线的定义,结合锐角三角函数的定义,化简变形可得,的方程,结合离心率公式可得所求值【详解】设双曲线的左、右焦点分别为,设双曲线的一条渐

6、近线方程为,可得直线的方程为,与双曲线联立,可得,设,由三角形面积的等积法可得,化简可得由双曲线的定义可得在三角形中,为直线的倾斜角),由,可得,可得,由化简可得,即为,可得,则故选:C.【点睛】本题考查直线与双曲线的位置关系、双曲线的定义、坐标求解、离心率求解,考查方程思想的运用及三角形等积法,考查运算求解能力,属于难题8.如图,体积为的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点,为小球相交部分(图中阴影部分)的体积,为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是A. B. C. D. 【答案】D【解

7、析】【分析】先设大球半径为,小球半径为,根据题中条件,分别表示出,进而可作差比较大小【详解】设大球半径为,小球半径为,根据题意,所以故选:D【点睛】本题主要考查球的体积的相关计算,熟记公式即可,属于常考题型二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,选对但不全的得3分,有选错的得0分.9.2019年10月31日,工信部宣布全国5G商用正式启动,三大运营商公布5G套餐方案,中国正式跨入5G时代.某通信行业咨询机构对我国三大5G设备商进行了全面评估和比较,其结果如雷达图所示(每项指标值满分为5分,分值高者为优),则( )A

8、. P设备商的研发投入超过Q设备商与R设备商B. 三家设备商的产品组合指标得分相同C. 在参与评估的各项指标中,Q设备商均优于R设备商D. 除产品组合外,P设备商其他4项指标均超过Q设备商与R设备商【答案】ABD【解析】【分析】根据雷达图中是越外面其指标值越优,由图可知ABD均正确.【详解】雷达图中是越外面其指标值越优,P设备商的研发投入在最外边,即P设备商的研发投入超过Q设备商与R设备商,故A正确;三家设备商的产品组合指标在同一个位置,即三家设备商的产品组合指标得分相同,故B正确;R设备商的研发投入优于Q设备商,故C错误;除产品组合外,P设备商其他4项指标均在最外边,故D正确;故选:ABD.

9、【点睛】本题主要考查对数表的综合观察能力,属于基础题.10.已知是椭圆的右焦点,椭圆上至少有21个不同的点,组成公差为的等差数列,则( )A. 该椭圆的焦距为6B. 的最小值为2C. 的值可以为D. 的值可以为【答案】ABC【解析】【分析】先由椭圆,得到焦距,判断A是否正确,椭圆上的动点,分析的取值范围,判断BCD是否正确,得到答案.【详解】由椭圆,得,故A正确;椭圆上的动点,即有,故的最小值为2,B正确;设,组成的等差数列为,公差,则,又,所以,所以,所以的最大值是,故C正确,D错误.故选:ABC.【点睛】本题以椭圆知识为载体,考查了椭圆的几何性质,等差数列的相关知识,属于中档题.11.对于

10、四面体,下列命题正确的是( )A. 由顶点作四面体的高,其垂足是的垂心B. 分别作三组相对棱中点的连线,所得的三条线段相交于一点C. 若分别作和的边上的高,则这两条高所在直线异面D. 最长棱必有某个端点,由它引出另两条棱的长度之和大于最长棱【答案】BD【解析】【分析】依题意画出图形,数形结合一一分析可得;【详解】解:如图取、的中点对于A.三角形的垂心是三条高线的交点,而点的位置可以任意变化,故A错误;对于B.,为平行四边形,同理也是平行四边形,的交点为平行四边形对角线的中点,的交点为平行四边形对角线的中点,故三条线段交于一点,故B正确;若四面体为正四面体,则两条高线刚好相交于的中点,故C为错误

11、;对于D.假设D错误,设最长,则,相加得,在,中,所以矛盾,故D正确.故选:BD.【点睛】本题考查异面直线,棱锥的结构特征,考查空间想象能力逻辑思维能力,属于中档题12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,.己知函数,则( )A. ,B. 是偶函数C. ,D. 若的值域为集合,使得,同时成立,则正整数的最大值是5【答案】ACD【解析】【分析】由取整函数的定义判断.【详解】由定义得,故 A正确;因为.易知在上是增函数;,的值域为,故B错误.,故

12、C正确;若,使得,同时成立,则,因为,若,则不存在同时满足,.只有时,存在故D正确;故答案为:ACD.【点睛】本题主要考查函数的新定义,还考查了分析求解问题的能力,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分.13.已知,则_.【答案】【解析】【分析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.14.已知单位向量,满足,则向量与的夹角为_.【答案】【解析】【分析】首先根据平面向量的运算律求出,再根据夹角公式计算可得;【详解】解:由单位向量,满足,得,

13、所以,所以,又,所以.故答案为:【点睛】本题考查平面向量的数量积的运算律以及夹角的计算,属于基础题.15.设函数的最小值为,且,则_,_.【答案】 (1). 2 (2). 9【解析】【分析】化简函数,换元后利用的单调性求出最小值即可得出,将转化为,再利用展开式的通项即可得到答案.【详解】由,令,因为函数,为减函数,所以当时,即,所以,因为的展开式通项为:,所以当,即时,展开式的项为,又,所以.故答案为:2;9【点睛】本题主要考查了函数的单调性,二项展开式,项的系数,换元法,转化思想,属于中档题.16.已知函数,将函数的图象向右平移个单位,所得的图象上每一点的纵坐标不变,再将横坐标伸长为原来的2

14、倍后所得到的图象对应的函数记作,己知常数,且函数在内恰有2021个零点,则_.【答案】【解析】【分析】先求出,令,得,则关于的二次方程必有两不等实根,又,则、异号,再对、分四种情况讨论得解.【详解】将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为,令,令,可得,令,得,则关于的二次方程必有两不等实根,又,则、异号,()当且时,则方程和在区间均有偶数个根,从而方程在有偶数个根,不合题意;()当且时,则方程在区间有偶数个根,无解,从而方程在有偶数个根,不合题意;()当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有一个根,在区间上无实解,方程在区间上无实数解,在区间上有两个根,因此,关于的方程在区间上有2020个根,在区间上有2022个根,不合题意;()当时,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上无实数根,在区间上只有一个实数根,方程在区间上有两个实数解,在区间上无实数解,因此关于的方程在区间上有2021个根,在区间上有2022个根,此时,得.所以.故答案为:1347.【点睛】本题主要考查三角函数的图象的变换,考查正弦函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服