ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:408.51KB ,
资源ID:2171265      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2171265.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(北京艺术生高考数学复习资料—八导数.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

北京艺术生高考数学复习资料—八导数.doc

1、导数概念与运算知识清单1导数的概念函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f(x)或y|。即f(x)=。说明:求函数y=f(x)在点x处的导数的步骤:(1)求函数的增量=f(x+)f(x);(2)求平均变化率=;(3)取极限,得导数f(x)=。2导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f

2、(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。3几种常见函数的导数: ; ; ; .4两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:=(v0)。形如y=f的函数称为复合函数。复合函数求导步骤:分解求导回代。法则:y|= y| u|导数应用知识

3、清单1 单调区间:一般地,设函数在某个区间可导,如果,则为增函数; 如果,则为减函数;如果在某区间内恒有,则为常数;2极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;3最值:一般地,在区间a,b上连续的函数f在a,b上必有最大值与最小值。求函数在(a,b)内的极值;求函数在区间端点的值(a)、(b);将函数 的各极值与(a)、(b)比较,其中最大的是最大值,其中最小的是最小值。课前预习1求下列函数导数(1) (2) (3) (4)y= 2若曲线的一条切线与直线垂直,则的方程为 3过点(1,0)

4、作抛物线的切线,则其中一条切线为 4曲线和在它们交点处的两条切线与轴所围成的三角形面积是 。5在区间上的最大值是 2典型例题一 导数的概念与运算例1:如果质点A按规律s=2t3运动,则在t=3 s时的瞬时速度为54m/s 变式:定义在D上的函数,如果满足:,常数,都有M成立,则称是D上的有界函数,其中M称为函数的上界.(1)若已知质点的运动方程为,要使在上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.a2例:求所给函数的导数:。变式:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0时,0.且g(3)=0.则不等式f(x)g(x)0的解集是(, 3)(0, 3)

5、例2:已知函数.(1)求这个函数的导数;(2)求这个函数在点处的切线的方程.变式1:已知函数.(1)求这个函数在点处的切线的方程;(2)过原点作曲线yex的切线,求切线的方程.变式2:函数yax21的图象与直线yx相切,则a例3:判断下列函数的单调性,并求出单调区间:变式1:函数的一个单调递增区间是变式2:已知函数(1)若函数的单调递减区间是(-3,1),则的是 . (2)若函数在上是单调增函数,则的取值范围是 .例4:求函数的极值.求函数在上的最大值与最小值.变式1:已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:()的值;()的值.变式2:若函数,当时,函数极值,(1)求函数

6、的解析式;(2)若函数有3个解,求实数的取值范围变式3:已知函数,对x1,2,不等式f(x)c2恒成立,求c的取值范围。 实战训练1. 已知曲线S:y=3xx3及点,则过点P可向S引切线的条数为 2. y=2x33x2+a的极大值为6,那么a等于 3. 函数f(x)x33x+1在闭区间-3,0上的最大值、最小值分别是 4.设l1为曲线y1=sinx在点(0,0)处的切线,l2为曲线y2=cosx在点(,0)处的切线,则l1与l2的夹角为_. 5. 设函数f (x)=x3+ax2+bx1,若当x=1时,有极值为1,则函数g(x)=x3+ax2+bx的单调递减区间为 . 6已知函数的图象在点处的切线方程是,则 7函数在区间上的最小值是 实战训练B1曲线在点处的切线与坐标轴所围三角形的面积为2已知二次函数的导数为,对于任意实数都有,则的最小值为 23若,则下列命题正确的是( )BABCD4曲线在点处的切线与坐标轴围成的三角形面积为5已知曲线的一条切线的斜率为,则切点的横坐标为 16 是的导函数,则的值是 38函数的单调递增区间是 9已知函数在区间上的最大值与最小值分别为,则

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服