ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:342.01KB ,
资源ID:2170181      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2170181.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(正弦定理和余弦定理-高考数学知识点总结-高考数学真题复习.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正弦定理和余弦定理-高考数学知识点总结-高考数学真题复习.doc

1、4.6正弦定理和余弦定理2014高考会这样考1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查复习备考要这样做1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合1 正弦定理:2R,其中R是三角形外接圆的半径由正弦定理可以变形:(1)abcsin_Asin_Bsin_C;(2)a2Rsin_A,b2Rsin_B,c2Rsin_C;(3)sin A,sin B,sin C等形式,以解决不同的三角形问题2 余弦定理:a

2、2b2c22bccos_A,b2a2c22accos_B,c2a2b22abcos_C余弦定理可以变形:cos A,cos B,cos C.3 SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R、r.4 在ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式absin Absin Aab解的个数一解两解一解一解难点正本疑点清源1 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在ABC中,ABabsin Asin B.2 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2

3、)化角为边,并常用正弦(余弦)定理实施边、角转换1 在ABC中,若A60,a,则_.答案2解析由正弦定理及等比性质知2R,而由A60,a,得2R2.2 (2012福建)已知ABC的三边长成公比为的等比数列,则其最大角的余弦值为_答案解析设三角形的三边长从小到大依次为a,b,c,由题意得ba,c2a.在ABC中,由余弦定理得cos C.3 (2012重庆)设ABC的内角A,B,C的对边分别为a,b,c,且cos A,cos B,b3,则c_.答案解析在ABC中,cos A0,sin A.cos B0,sin B.sin Csin(AB)sin(AB)sin Acos Bcos Asin B.由正

4、弦定理知,c.4 (2011课标全国)在ABC中,B60,AC,则AB2BC的最大值为_答案2解析由正弦定理知,AB2sin C,BC2sin A.又AC120,AB2BC2sin C4sin(120C)2(sin C2sin 120cos C2cos 120sin C)2(sin Ccos Csin C)2(2sin Ccos C)2sin(C),其中tan ,是第一象限角,由于0C120,且是第一象限角,因此AB2BC有最大值2.5 已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc16,则三角形的面积为 ()A2 B8 C. D.答案C解析2R8,sin C,SABCabsi

5、n Cabc16.题型一利用正弦定理解三角形例1在ABC中,a,b,B45.求角A、C和边c.思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断解由正弦定理得,sin A.ab,A60或A120.当A60时,C180456075,c;当A120时,C1804512015,c.探究提高(1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意 已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则角A

6、的大小为_答案解析AC2B且ABC,B.由正弦定理知:sin A,又ab,AB,A.题型二利用余弦定理求解三角形例2在ABC中,a、b、c分别是角A、B、C的对边,且.(1)求角B的大小;(2)若b,ac4,求ABC的面积思维启迪:由,利用余弦定理转化为边的关系求解解(1)由余弦定理知:cos B,cos C.将上式代入得:,整理得:a2c2b2ac.cos B.0B,B.(2)将b,ac4,B代入b2a2c22accos B,得b2(ac)22ac2accos B,13162ac,ac3.SABCacsin B.探究提高(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的

7、关键(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用 已知A,B,C为ABC的三个内角,其所对的边分别为a,b,c,且2cos2cos A0.(1)求角A的值;(2)若a2,bc4,求ABC的面积解(1)由2cos2cos A0,得1cos Acos A0,即cos A,0A,A.(2)由余弦定理得,a2b2c22bccos A,A,则a2(bc)2bc,又a2,bc4,有1242bc,则bc4,故SABCbcsin A.题型三正弦定理、余弦定理的综合应用例3(2012课标全国)已知a,b,c分别为ABC三个内角A,B,C的对边,acos Casin Cbc0.

8、(1)求A;(2)若a2,ABC的面积为,求b,c.思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A;面积公式和余弦定理相结合,可求出b,c.解(1)由acos Casin Cbc0及正弦定理得sin Acos Csin Asin Csin Bsin C0.因为BAC,所以sin Asin Ccos Asin Csin C0.由于sin C0,所以sin.又0A,故A.(2)ABC的面积Sbcsin A,故bc4.而a2b2c22bccos A,故b2c28.解得bc2.探究提高在已知关系式中,若既含有边又含有角通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角 在A

9、BC中,内角A,B,C所对的边长分别是a,b,c.(1)若c2,C,且ABC的面积为,求a,b的值;(2)若sin Csin(BA)sin 2A,试判断ABC的形状解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A,A,ABC为直角三角形;当sin Asin B

10、0时,得sin Bsin A,由正弦定理得ab,即ABC为等腰三角形ABC为等腰三角形或直角三角形高考中的解三角形问题典例:(12分)(2012辽宁)在ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列(1)求cos B的值;(2)边a,b,c成等比数列,求sin Asin C的值考点分析本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力解题策略根据三角形内角和定理可直接求得B;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解规范解答解(1)由已知2BAC,ABC180,解得B60,所以cos B.4分(2)方法一由已知b2ac,及cos B,根据

11、正弦定理得sin2Bsin Asin C,8分所以sin Asin C1cos2B.12分方法二由已知b2ac,及cos B,根据余弦定理得cos B,解得ac,8分所以ACB60,故sin Asin C.12分解后反思(1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1 应熟练掌握和运用内角和定理:ABC,中互补和互余的情况,结合诱导公式可以减少角的种数2 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin2Asin2Bsin2C2sin Bsin

12、Ccos A,可以进行化简或证明失误与防范1 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论2 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 (2012广东)在ABC中,若A60,B45,BC3,则AC等于()A4 B2 C. D.答案B解析在ABC中,AC2.2 (2011浙江)在ABC中,角A,B,C所对的边分别为a,b,c.若acos Absin B,则sin Acos Acos2B等于 ()A B.

13、 C1 D1答案D解析acos Absin B,sin Acos Asin Bsin B,即sin Acos Asin2B0,sin Acos A(1cos2B)0,sin Acos Acos2B1.3 在ABC中,a,b,c分别为角A,B,C所对的边,若a2bcos C,则此三角形一定是 ()A等腰直角三角形 B直角三角形C等腰三角形 D等腰三角形或直角三角形答案C解析因为a2bcos C,所以由余弦定理得:a2b,整理得b2c2,因此三角形一定是等腰三角形4 (2012湖南)ABC中,AC,BC2,B60,则BC边上的高等于 ()A. B.C. D.答案B解析设ABa,则由AC2AB2BC

14、22ABBCcos B知7a242a,即a22a30,a3(负值舍去)BC边上的高为ABsin B3.二、填空题(每小题5分,共15分)5 (2011北京)在ABC中,若b5,B,sin A,则a_.答案解析根据正弦定理应有,a.6 (2011福建)若ABC的面积为,BC2,C60,则边AB的长度等于_答案2解析由于SABC,BC2,C60,2AC,AC2,ABC为正三角形AB2.7 在ABC中,若AB,AC5,且cos C,则BC_.答案4或5解析设BCx,则由余弦定理AB2AC2BC22ACBCcos C得525x225x,即x29x200,解得x4或x5.三、解答题(共22分)8 (10

15、分)在ABC中,角A,B,C所对的边分别为a,b,c,且满足cos ,3.(1)求ABC的面积;(2)若bc6,求a的值解(1)cos ,cos A2cos21,sin A.又3,bccos A3,bc5.SABCbcsin A52.(2)由(1)知,bc5,又bc6,根据余弦定理得a2b2c22bccos A(bc)22bc2bccos A36101020,a2.9 (12分)在ABC中,a、b、c分别为角A、B、C的对边,4sin2cos 2A.(1)求A的度数;(2)若a,bc3,求b、c的值解(1)BCA,即,由4sin2cos 2A,得4cos2cos 2A,即2(1cos A)(2

16、cos2A1),整理得4cos2A4cos A10,即(2cos A1)20.cos A,又0A180,A60.(2)由A60,根据余弦定理cos A,即,b2c2bc3,又bc3,b2c22bc9.整理得:bc2.解联立方程组得或B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1 (2012上海)在ABC中,若sin2Asin2Bsin2C,则ABC的形状是()A钝角三角形 B直角三角形C锐角三角形 D不能确定答案A解析由正弦定理知2R,sin A,sin B,sin C.sin2Asin2Bsin2C,a2b2c2,cos CBC,3b20acos A,则

17、sin Asin Bsin C为 ()A432 B567C543 D654答案D解析ABC,abc.设ab1,cb1,由3b20acos A得3b20(b1).化简,得7b227b400.解得b5或b(舍去),a6,c4.sin Asin Bsin C654.二、填空题(每小题5分,共15分)4 在ABC中,a、b、c分别为A、B、C的对边长,已知a,b,c成等比数列,且a2c2acbc,则A_,ABC的形状为_答案60正三角形解析a,b,c成等比数列,b2ac.又a2c2acbc,b2c2a2bc.在ABC中,由余弦定理得cos A,A60.由b2ac,即a,代入a2c2acbc,整理得(b

18、c)(b3c3cb2)0,bc.ABC为正三角形5 在ABC中,若A60,b1,SABC,则的值为_答案解析SABC,即bcsin A,c4.由余弦定理a2b2c22bccos A13,a,.6 在锐角ABC中,角A、B、C的对边分别为a、b、c.若6cos C,则的值是_答案4解析由6cos C,得b2a26abcos C.化简整理得2(a2b2)3c2,将切化弦,得().根据正、余弦定理得4.三、解答题7 (13分)(2012浙江)在ABC中,内角A,B,C的对边分别为a,b,c.已知cos A,sin Bcos C.(1)求tan C的值;(2)若a,求ABC的面积解(1)因为0A,cos A,得sin A.又cos Csin Bsin(AC)sin Acos Ccos Asin Ccos Csin C,所以tan C.(2)由tan C,得sin C,cos C.于是sin Bcos C,由a及正弦定理,得c.设ABC的面积为S,则Sacsin B.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服