ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:110.54KB ,
资源ID:2168982      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2168982.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学竞赛专题选讲待定系数法.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学竞赛专题选讲待定系数法.doc

1、个人收集整理 勿做商业用途初中数学竞赛专题选讲(初三.7)待定系数法一、内容提要1. 多项式恒等的定义:设f(x)和g(x)是含相同变量x的两个多项式,f(x)g(x)表示这两个多项式恒等.就是说x在取值范围内 ,不论用什么实数值代入左右的两边,等式总是成立的.符号“”读作“恒等于”,也可以用等号表示恒等式。例如:(x+3)2=x2+6x+9, 5x26x+1=(5x1)(x1), x339x70=(x+2)(x+5)(x7)。都是恒等式。根据恒等式定义,可求恒等式中的待定系数的值.例如:已知:恒等式ax2+bx+c=2(x+1)(x2)。求:a+b+c ; ab+c.解:以x=1, 代入等式

2、的左右两边,得a+b+c4.以x=1,代入等式的左右两边,得ab+c0.2. 恒等式的性质:如果两个多项式恒等,则左右两边同类项的系数相等。即 如果 a0xn+a1xn1+an1x+an=b0xn+b1xn1+bn1x+bn那么 a0=b0 , a1=b1, , an1=bn1 , an=bn。上例中又解: ax2+bx+c=2x22x4。 a=2, b=2, c=4. a+b+c4, ab+c0。3. 待定系数法:就是先假设结论为一个含有待定系数的代数式,然后根据恒等式定义和性质,确定待定系数的值.二、例题 例1. 已知: 求:A,B,C的值。解:去分母,得x2x+2=A(x3)(x+2)+

3、Bx(x+2)+Cx(x3).根据恒等式定义(选择x的适当值,可直接求出A,B,C的值),当x=0时,26A。A。当x=3时,815B.B。当x=2时,810C。C。本题也可以把等号右边的代数式,整理成为关于x的二次三项式,然后用恒等式性质:“左右两边同类项的系数相等”,列出方程组来解。(见下例)。例2. 把多项式x3x2+2x+2表示为关于x1的降幂排列形式。解:用待定系数法:设x3x2+2x+2=a(x1)3+b(x1)2+c(x1)+d 把右边展开,合并同类项(把同类项对齐),得x3x2+2x+2=ax33ax2+3axa +bx22bx+b +cxc +d 用恒等式的性质,比较同类项系

4、数,得 解这个方程组,得x3x2+2x+2=(x1)3+2(x1)2+3(x1)+4.本题也可用换元法:设x1=y, 那么x=y+1.把左边关于x的多项式化为关于y 的多项式,最后再把y换成x 1。例3. 已知:4x4+ax3+13x2+bx+1是完全平方式。求: a和b的值。解:设4x4+ax3+13x2+bx+1(2x2+mx1)2(设待定的系数,要尽可能少。)右边展开,合并同类项,得4x4+ax3+13x2+bx+14x4+4mx3+(m24)x22mx+1.比较左右两边同类项系数,得方程组; 或.解得.例4. 推导一元三次方程根与系数的关系。解:设方程ax3+bx2+cx+d=0(a0

5、)的三个根分别为x1,x2,x3.原方程化为x3+。x1,x2,x3是方程的三个根.x3+(xx1) (xx2) (xx3)。把右边展开,合并同类项,得x3+=x3( x1+x2+x3)x2+(x1x2+x1x3+x2x3)xx1x2x3。比较左右同类项的系数,得一元三次方程根与系数的关系是:x1+x2+x3=,x1x2+x1x3+x2x3,x1x2x3.例5. 已知:x3+px+q 能被(xa)2整除。求证:4p3+27q2=0.证明:设x3+px+q(xa)2(x+b).x3+px+q=x3+(b2a)x2+(a22ab)x+a2b。 由得b=2a,代入和得 4p3+27q24(3a2)3

6、+27(2a3)2=4(27a6)+27(4a6)=0。(证毕).例6. 已知:f (x)=x2+bx+c是g (x)=x4 +6x225的因式,也是q (x)=3x4+4x2+28x+5的因式。求:f (1)的值。解:g (x),q (x)都能被f (x)整除,它们的和、差、倍也能被f (x)整除.为了消去四次项,设g (x)q (x)kf (x), (k为正整数).即14x228x+70k (x2+bx+c)14(x22x+5)k (x2+bx+c)k=14, b=2, c=5。即f (x)=x22x+5。f (1)=4 .例7. 用待定系数法,求(x+y)5 的展开式解:展开式是五次齐次

7、对称式,可设(x+y)5a(x5+y5)+b(x4y+xy4)+c(x3y2+x2y3) (a,b,c是待定系数.)当x=1,y=0时,得a=1;当x=1,y=1时,得2a+2b+2c=32,即a+b+c=16当x=1,y=2时,得31a14b+4c=1.得方程组解方程组,得(x+y)5x5+5x4y+10x3y2+10x2y3+5xy4+y5.三、练习511.已知。求a,b的值。2。已知:。求:A,B,C的值.3. 已知:x46x3+13x212x+4是完全平方式。求:这个代数式的算术平方根。4. 已知:ax3+bx2+cx+d能被x2+p整除。求证:ad=bc。5. 已知:x39x2+25

8、x+13=a(x+1)(x2)(x3) =b(x1)(x2)(x3) =c(x1)(x+1)(x3) =d(x1)(x+1)(x2)。求:a+b+c+d的值。6. 试用待定系数法,证明一元二次方程根与系数的关系(即韦达定理)。7. 用x2的各次幂表示3x310x2+13.8. k取什么值时,kx22xyy2+3x5y+2能分解为两个一次因式。.9. 分解因式:x2+3xy+2y24x+5y+3;x4+1987x2+1986x+1987.10. 求下列展开式: (x+y)6; (a+b+c)3。11. 多项式x2yy2z+z2xx2z+y2x+z2y2xyz因式分解的结果是( ) (A) (x+

9、y)(yz)(xz) . (B) (x+y)(y+z)(xz)。(C) (xy)(yz)(x+z). (D) (xy)(y+z)(x+z)。12. 已知( a+1)4=a4+4a3+6a2+4a+1,若S=(x1)4+4(x1)3+6(x1)2+4x3.则S等于( )(A) (x2)4 。 (B) (x1)4 . (C) x4 。 (D) (x+1)4.13 已知:的值是恒为常数求:a,b,c的值.参考答案1。 a=,b= 2. A=1,B=2,C=3 3。 (x23x+2)4。由 (x2+p)(ax+) 5. 1 7。 3(x2)3+8(x2)24(x2)38. 先整理为关于x的二次三项式,并把常数项分解因式,再用待定系数法。9. (x+y +1)(x+2y+3) (x2+x+1)(x2x+1987)10。x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6。 x3+y3+z3+3(x2y+y2z+z2x+x2z+y2x+z2y)+6xyz.11。 (A) 12。(C) 13. a=1, b=1.5, c=2。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服