ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:279.66KB ,
资源ID:2168339      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2168339.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2018届高考数学一轮复习配餐作业37二元一次不等式组与简单的线性规划问题含解析理.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2018届高考数学一轮复习配餐作业37二元一次不等式组与简单的线性规划问题含解析理.doc

1、配餐作业(三十七)二元一次不等式(组)与简单的线性规划问题(时间:40分钟)一、选择题1(2016四川高考)设p:实数x,y满足(x1)2(y1)22,q:实数x,y满足则p是q的()A必要不充分条件 B充分不必要条件C充要条件 D既不充分也不必要条件解析取xy0满足条件p,但不满足条件q,反之,对于任意的x,y满足条件q,显然必满足条件p,所以p是q的必要不充分条件,故选A。答案A2若满足条件的整点(x,y)恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A3 B2C1 D0解析不等式组所表示的平面区域如图中阴影部分,当a0时,只有4个整点(1,1),(0,0),(1,0),

2、(2,0);当a1时,正好增加(1,1),(0,1),(1,1),(2,1),(3,1)共5个整点。故选C。答案C3(2017郑州模拟)已知点P(x,y)的坐标满足条件那么点P到直线3x4y130的距离的最小值为()A. B2C. D1解析在坐标平面内画出题中的不等式组表示的平面区域及直线3x4y130。结合图形可知,在该平面区域内所有的点中,到直线3x4y130的距离最近的点是(1,0)。又点(1,0)到直线3x4y130的距离等于2,即点P到直线3x4y130的距离的最小值为2。故选B。答案B4(2016天津高考)设变量x,y满足约束条件则目标函数z2x5y的最小值为()A4 B6C10

3、D17解析解法1:如图,已知约束条件所表示的平面区域为图中所示的三角形区域ABC(包含边界),其中A(0,2),B(3,0),C(1,3)。根据目标函数的几何意义,可知当直线yx过点B(3,0)时,z取得最小值23506。故选B。解法2:由题意知,约束条件所表示的平面区域的顶点分别为A(0,2),B(3,0),C(1,3)。将A,B,C三点的坐标分别代入z2x5y,得z10,6,17,故z的最小值为6。故选B。答案B5当变量x,y满足约束条件时,zx3y的最大值为8,则实数m的值是()A4 B3C2 D1解析画出可行域,如图中阴影所示,目标函数zx3y变形为y,当直线过点C时,z取到最大值,又

4、C(m,m),所以8m3m,解得m4。故选A。答案A6(2016浙江高考)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影。由区域中的点在直线xy20上的投影构成的线段记为AB,则|AB|()A2 B4C3 D6解析作出不等式组所表示的平面区域如图中阴影部分所示,过点C,D分别作直线xy20的垂线,垂足分别为A,B,则四边形ABDC为矩形,又C(2,2),D(1,1),所以|AB|CD|3。故选C。答案C7(2016东北三校联考)变量x,y满足约束条件若使zaxy取得最大值的最优解有无穷多个,则实数a的取值集合是()A3,0 B3,1C0,1 D3,0,1解析作出不等式组所表示

5、的平面区域,如图所示。易知直线zaxy与xy2或3xy14平行时取得最大值的最优解有无穷多个,即a1或a3,a1或a3,故选B。答案B8设x,y满足约束条件则的取值范围是()A1,5 B2,6C2,10 D3,11解析画出可行域如图阴影部分所示,设z12,设z,则z的几何意义为可行域内的动点P(x,y)与定点D(1,1)连线的斜率。则易得zkDA,kDB,易得z1,5,z12z3,11,故选D。答案D二、填空题9设变量x,y满足约束条件则目标函数z3xy的最大值为_。解析根据约束条件作出可行域,如图中阴影部分所示,z3xy,y3xz,当该直线经过点A(2,2)时,z取得最大值,即zmax322

6、4。答案410(2016江苏高考)已知实数x,y满足则x2y2的取值范围是_。解析不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示。因为原点到直线2xy20的距离为,所以(x2y2)min,又当(x,y)取点(2,3)时,x2y2取得最大值13,故x2y2的取值范围是。答案11设实数x,y满足则的取值范围是_。解析作出不等式组表示的可行域如图中阴影部分所示,从图可看出,表示可行域内的点与点A(3,1)连线的斜率,其最大值为kAD1,最小值为kAC。答案12(2016山西质检)若变量x,y满足则2xy的取值范围为_。解析作出满足不等式组的平面区域,

7、如图中阴影部分所示,平移直线2xy0,经过点(1,0)时,2xy取得最大值2102,经过点(1,0)时,2xy取得最小值2(1)02,所以2xy的取值范围为2,2。答案2,2(时间:20分钟)1(2017沈阳模拟)实数x,y满足则z|xy|的最大值是()A2 B4C6 D8解析依题意画出可行域如图阴影部分所示,令myx,则m为直线l:yxm在y轴上的截距,由图知在点A(2,6)处m取最大值4,在C(2,0)处取最小值2,所以m2,4,所以z的最大值是4,故选B。答案B2(2016皖江名校联考)已知实数x,y满足若目标函数zaxby5(a0,b0)的最小值为2,则的最小值为()A. B.C. D

8、.解析作出不等式组所表示的平面区域(如图中阴影部分所示),对zaxby5(a0,b0)进行变形,可得yx,所以斜率为负数,联立求出交点A的坐标为(2,2),当目标函数zaxby5(a0,b0)过点A时,取得最小值,得ab,所以(ab),当且仅当ab时,取等号,故选D。答案D3某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利

9、润是()A1 800元 B2 400元C2 800元 D3 100元解析设公司每天生产甲种产品x桶,乙种产品y桶,公司共可获得的利润为z元/天,则由已知,得z300x400y,且画可行域如图中阴影部分所示,目标函数z300x400y可变形为yx,这是随z变化的一族平行直线,解方程组所以即A(4,4)。所以zmax1 2001 6002 800(元)。故选C。答案C4设P是不等式组表示的平面区域内的任意一点,向量m(1,1),n(2,1),若mn,则2的最大值为_。解析首先根据已知约束条件画出其所在的平面区域如图所示。设点P(x,y),然后由m(1,1),n(2,1),且mn得所以所以令z2(x2y)2(xy)x3y,最后根据图形可得在点B处取得最大值,即zmax(2)max1325。答案5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服