ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:269.01KB ,
资源ID:2168328      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2168328.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2017-2018高考三角函数大题.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2017-2018高考三角函数大题.doc

1、2017-2018高考三角函数大题一解答题(共14小题)2(2018新课标)在平面四边形ABCD中,ADC=90,A=45,AB=2,BD=5(1)求cosADB;(2)若DC=2,求BC3(2018北京)在ABC中,a=7,b=8,cosB=()求A;()求AC边上的高4(2018北京)已知函数f(x)=sin2x+sinxcosx()求f(x)的最小正周期;()若f(x)在区间,m上的最大值为,求m的最小值5(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解6(2018天津)在ABC

2、中,内角A,B,C所对的边分别为a,b,c已知bsinA=acos(B)()求角B的大小;()设a=2,c=3,求b和sin(2AB)的值7(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周长8(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2(1)求cosB;(2)若a+c=6,ABC的面积为2,求b9(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2(1)求c;(2)设D为BC边上

3、一点,且ADAC,求ABD的面积10(2017天津)在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a=5,c=6,sinB=()求b和sinA的值;()求sin(2A+)的值11(2017北京)在ABC中,A=60,c=a(1)求sinC的值;(2)若a=7,求ABC的面积12(2017江苏)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值13(2017浙江)已知函数f(x)=sin2xcos2x2sinx cosx(xR)()求f()的值()求f(x)的最小正周期及单调递增区间14(2017上

4、海)已知函数f(x)=cos2xsin2x+,x(0,)(1)求f(x)的单调递增区间;(2)设ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求ABC的面积2017-2018高考三角函数大题参考答案与试题解析一解答题(共14小题)1(2018新课标)已知函数f(x)=x+alnx(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:a2【解答】解:(1)函数的定义域为(0,+),函数的导数f(x)=1+=,设g(x)=x2ax+1,当a0时,g(x)0恒成立,即f(x)0恒成立,此时函数f(x)在(0,+)上是减函数,当a0时,判别式=a24,当0

5、a2时,0,即g(x)0,即f(x)0恒成立,此时函数f(x)在(0,+)上是减函数,当a2时,x,f(x),f(x)的变化如下表: x (0,) (,) (,+) f(x) 0+ 0 f(x) 递减 递增递减综上当a2时,f(x)在(0,+)上是减函数,当a2时,在(0,),和(,+)上是减函数,则(,)上是增函数(2)由(1)知a2,0x11x2,x1x2=1,则f(x1)f(x2)=(x2x1)(1+)+a(lnx1lnx2)=2(x2x1)+a(lnx1lnx2),则=2+,则问题转为证明1即可,即证明lnx1lnx2x1x2,即证2lnx1x1在(0,1)上恒成立,设h(x)=2ln

6、xx+,(0x1),其中h(1)=0,求导得h(x)=1=0,则h(x)在(0,1)上单调递减,h(x)h(1),即2lnxx+0,故2lnxx,则a2成立2(2018新课标)在平面四边形ABCD中,ADC=90,A=45,AB=2,BD=5(1)求cosADB;(2)若DC=2,求BC【解答】解:(1)ADC=90,A=45,AB=2,BD=5由正弦定理得:=,即=,sinADB=,ABBD,ADBA,cosADB=(2)ADC=90,cosBDC=sinADB=,DC=2,BC=53(2018北京)在ABC中,a=7,b=8,cosB=()求A;()求AC边上的高【解答】解:()ab,AB

7、,即A是锐角,cosB=,sinB=,由正弦定理得=得sinA=,则A=()由余弦定理得b2=a2+c22accosB,即64=49+c2+27c,即c2+2c15=0,得(c3)(c+5)=0,得c=3或c=5(舍),则AC边上的高h=csinA=3=4(2018北京)已知函数f(x)=sin2x+sinxcosx()求f(x)的最小正周期;()若f(x)在区间,m上的最大值为,求m的最小值【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x)+,f(x)的最小正周期为T=;()若f(x)在区间,m上的最大值为,可得2x,2m,即有2m,解得m,则m的最小

8、值为5(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解【解答】解:(1)f(x)=asin2x+2cos2x,f(x)=asin2x+2cos2x,f(x)为偶函数,f(x)=f(x),asin2x+2cos2x=asin2x+2cos2x,2asin2x=0,a=0;(2)f()=+1,asin+2cos2()=a+1=+1,a=,f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,f(x)=1,2sin(2x+)+1=1,sin(2x+)=,2x

9、+=+2k,或2x+=+2k,kZ,x=+k,或x=+k,kZ,x,x=或x=或x=或x=6(2018天津)在ABC中,内角A,B,C所对的边分别为a,b,c已知bsinA=acos(B)()求角B的大小;()设a=2,c=3,求b和sin(2AB)的值【解答】解:()在ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B)asinB=acos(B),即sinB=cos(B)=cosBcos+sinBsin=cosB+,tanB=,又B(0,),B=()在ABC中,a=2,c=3,B=,由余弦定理得b=,由bsinA=acos(B),得sinA=,ac,cosA=,si

10、n2A=2sinAcosA=,cos2A=2cos2A1=,sin(2AB)=sin2AcosBcos2AsinB=7(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周长【解答】解:(1)由三角形的面积公式可得SABC=acsinB=,3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,sinA0,sinBsinC=;(2)6cosBcosC=1,cosBcosC=,cosBcosCsinBsinC=,cos(B+C)=,cosA=,0A,A=,=2R=2

11、,sinBsinC=,bc=8,a2=b2+c22bccosA,b2+c2bc=9,(b+c)2=9+3cb=9+24=33,b+c=周长a+b+c=3+8(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2(1)求cosB;(2)若a+c=6,ABC的面积为2,求b【解答】解:(1)sin(A+C)=8sin2,sinB=4(1cosB),sin2B+cos2B=1,16(1cosB)2+cos2B=1,16(1cosB)2+cos2B1=0,16(cosB1)2+(cosB1)(cosB+1)=0,(17cosB15)(cosB1)=0,cosB

12、=;(2)由(1)可知sinB=,SABC=acsinB=2,ac=,b2=a2+c22accosB=a2+c22=a2+c215=(a+c)22ac15=361715=4,b=29(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2(1)求c;(2)设D为BC边上一点,且ADAC,求ABD的面积【解答】解:(1)sinA+cosA=0,tanA=,0A,A=,由余弦定理可得a2=b2+c22bccosA,即28=4+c222c(),即c2+2c24=0,解得c=6(舍去)或c=4,故c=4(2)c2=b2+a22abcosC,16=28+

13、4222cosC,cosC=,CD=CD=BCSABC=ABACsinBAC=42=2,SABD=SABC=10(2017天津)在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a=5,c=6,sinB=()求b和sinA的值;()求sin(2A+)的值【解答】解:()在ABC中,ab,故由sinB=,可得cosB=由已知及余弦定理,有=13,b=由正弦定理,得sinA=b=,sinA=;()由()及ac,得cosA=,sin2A=2sinAcosA=,cos2A=12sin2A=故sin(2A+)=11(2017北京)在ABC中,A=60,c=a(1)求sinC的值;(2)若a=7

14、,求ABC的面积【解答】解:(1)A=60,c=a,由正弦定理可得sinC=sinA=,(2)a=7,则c=3,CA,由(1)可得cosC=,sinB=sin(A+C)=sinAcosC+cosAsinC=+=,SABC=acsinB=73=612(2017江苏)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值【解答】解:(1)=(cosx,sinx),=(3,),cosx=3sinx,tanx=,x0,x=,(2)f(x)=3cosxsinx=2(cosxsinx)=2cos(x+),x0,x+,1cos(

15、x+),当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值213(2017浙江)已知函数f(x)=sin2xcos2x2sinx cosx(xR)()求f()的值()求f(x)的最小正周期及单调递增区间【解答】解:函数f(x)=sin2xcos2x2sinx cosx=sin2xcos2x=2sin(2x+)()f()=2sin(2+)=2sin=2,()=2,故T=,即f(x)的最小正周期为,由2x+2k,+2k,kZ得:x+k,+k,kZ,故f(x)的单调递增区间为+k,+k或写成k+,k+,kZ14(2017上海)已知函数f(x)=cos2xsin2x+,x(0,

16、)(1)求f(x)的单调递增区间;(2)设ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求ABC的面积【解答】解:(1)函数f(x)=cos2xsin2x+=cos2x+,x(0,),由2k2x2k,解得kxk,kZ,k=1时,x,可得f(x)的增区间为,);(2)设ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=,即A=,由余弦定理可得a2=b2+c22bccosA,化为c25c+6=0,解得c=2或3,若c=2,则cosB=0,即有B为钝角,c=2不成立,则c=3,ABC的面积为S=bcsinA=53=第16页(共16页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服