1、2017-2018高考三角函数大题一解答题(共14小题)2(2018新课标)在平面四边形ABCD中,ADC=90,A=45,AB=2,BD=5(1)求cosADB;(2)若DC=2,求BC3(2018北京)在ABC中,a=7,b=8,cosB=()求A;()求AC边上的高4(2018北京)已知函数f(x)=sin2x+sinxcosx()求f(x)的最小正周期;()若f(x)在区间,m上的最大值为,求m的最小值5(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解6(2018天津)在ABC
2、中,内角A,B,C所对的边分别为a,b,c已知bsinA=acos(B)()求角B的大小;()设a=2,c=3,求b和sin(2AB)的值7(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周长8(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2(1)求cosB;(2)若a+c=6,ABC的面积为2,求b9(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2(1)求c;(2)设D为BC边上
3、一点,且ADAC,求ABD的面积10(2017天津)在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a=5,c=6,sinB=()求b和sinA的值;()求sin(2A+)的值11(2017北京)在ABC中,A=60,c=a(1)求sinC的值;(2)若a=7,求ABC的面积12(2017江苏)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值13(2017浙江)已知函数f(x)=sin2xcos2x2sinx cosx(xR)()求f()的值()求f(x)的最小正周期及单调递增区间14(2017上
4、海)已知函数f(x)=cos2xsin2x+,x(0,)(1)求f(x)的单调递增区间;(2)设ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求ABC的面积2017-2018高考三角函数大题参考答案与试题解析一解答题(共14小题)1(2018新课标)已知函数f(x)=x+alnx(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:a2【解答】解:(1)函数的定义域为(0,+),函数的导数f(x)=1+=,设g(x)=x2ax+1,当a0时,g(x)0恒成立,即f(x)0恒成立,此时函数f(x)在(0,+)上是减函数,当a0时,判别式=a24,当0
5、a2时,0,即g(x)0,即f(x)0恒成立,此时函数f(x)在(0,+)上是减函数,当a2时,x,f(x),f(x)的变化如下表: x (0,) (,) (,+) f(x) 0+ 0 f(x) 递减 递增递减综上当a2时,f(x)在(0,+)上是减函数,当a2时,在(0,),和(,+)上是减函数,则(,)上是增函数(2)由(1)知a2,0x11x2,x1x2=1,则f(x1)f(x2)=(x2x1)(1+)+a(lnx1lnx2)=2(x2x1)+a(lnx1lnx2),则=2+,则问题转为证明1即可,即证明lnx1lnx2x1x2,即证2lnx1x1在(0,1)上恒成立,设h(x)=2ln
6、xx+,(0x1),其中h(1)=0,求导得h(x)=1=0,则h(x)在(0,1)上单调递减,h(x)h(1),即2lnxx+0,故2lnxx,则a2成立2(2018新课标)在平面四边形ABCD中,ADC=90,A=45,AB=2,BD=5(1)求cosADB;(2)若DC=2,求BC【解答】解:(1)ADC=90,A=45,AB=2,BD=5由正弦定理得:=,即=,sinADB=,ABBD,ADBA,cosADB=(2)ADC=90,cosBDC=sinADB=,DC=2,BC=53(2018北京)在ABC中,a=7,b=8,cosB=()求A;()求AC边上的高【解答】解:()ab,AB
7、,即A是锐角,cosB=,sinB=,由正弦定理得=得sinA=,则A=()由余弦定理得b2=a2+c22accosB,即64=49+c2+27c,即c2+2c15=0,得(c3)(c+5)=0,得c=3或c=5(舍),则AC边上的高h=csinA=3=4(2018北京)已知函数f(x)=sin2x+sinxcosx()求f(x)的最小正周期;()若f(x)在区间,m上的最大值为,求m的最小值【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x)+,f(x)的最小正周期为T=;()若f(x)在区间,m上的最大值为,可得2x,2m,即有2m,解得m,则m的最小
8、值为5(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解【解答】解:(1)f(x)=asin2x+2cos2x,f(x)=asin2x+2cos2x,f(x)为偶函数,f(x)=f(x),asin2x+2cos2x=asin2x+2cos2x,2asin2x=0,a=0;(2)f()=+1,asin+2cos2()=a+1=+1,a=,f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,f(x)=1,2sin(2x+)+1=1,sin(2x+)=,2x
9、+=+2k,或2x+=+2k,kZ,x=+k,或x=+k,kZ,x,x=或x=或x=或x=6(2018天津)在ABC中,内角A,B,C所对的边分别为a,b,c已知bsinA=acos(B)()求角B的大小;()设a=2,c=3,求b和sin(2AB)的值【解答】解:()在ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B)asinB=acos(B),即sinB=cos(B)=cosBcos+sinBsin=cosB+,tanB=,又B(0,),B=()在ABC中,a=2,c=3,B=,由余弦定理得b=,由bsinA=acos(B),得sinA=,ac,cosA=,si
10、n2A=2sinAcosA=,cos2A=2cos2A1=,sin(2AB)=sin2AcosBcos2AsinB=7(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周长【解答】解:(1)由三角形的面积公式可得SABC=acsinB=,3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,sinA0,sinBsinC=;(2)6cosBcosC=1,cosBcosC=,cosBcosCsinBsinC=,cos(B+C)=,cosA=,0A,A=,=2R=2
11、,sinBsinC=,bc=8,a2=b2+c22bccosA,b2+c2bc=9,(b+c)2=9+3cb=9+24=33,b+c=周长a+b+c=3+8(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2(1)求cosB;(2)若a+c=6,ABC的面积为2,求b【解答】解:(1)sin(A+C)=8sin2,sinB=4(1cosB),sin2B+cos2B=1,16(1cosB)2+cos2B=1,16(1cosB)2+cos2B1=0,16(cosB1)2+(cosB1)(cosB+1)=0,(17cosB15)(cosB1)=0,cosB
12、=;(2)由(1)可知sinB=,SABC=acsinB=2,ac=,b2=a2+c22accosB=a2+c22=a2+c215=(a+c)22ac15=361715=4,b=29(2017新课标)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2(1)求c;(2)设D为BC边上一点,且ADAC,求ABD的面积【解答】解:(1)sinA+cosA=0,tanA=,0A,A=,由余弦定理可得a2=b2+c22bccosA,即28=4+c222c(),即c2+2c24=0,解得c=6(舍去)或c=4,故c=4(2)c2=b2+a22abcosC,16=28+
13、4222cosC,cosC=,CD=CD=BCSABC=ABACsinBAC=42=2,SABD=SABC=10(2017天津)在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a=5,c=6,sinB=()求b和sinA的值;()求sin(2A+)的值【解答】解:()在ABC中,ab,故由sinB=,可得cosB=由已知及余弦定理,有=13,b=由正弦定理,得sinA=b=,sinA=;()由()及ac,得cosA=,sin2A=2sinAcosA=,cos2A=12sin2A=故sin(2A+)=11(2017北京)在ABC中,A=60,c=a(1)求sinC的值;(2)若a=7
14、,求ABC的面积【解答】解:(1)A=60,c=a,由正弦定理可得sinC=sinA=,(2)a=7,则c=3,CA,由(1)可得cosC=,sinB=sin(A+C)=sinAcosC+cosAsinC=+=,SABC=acsinB=73=612(2017江苏)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值【解答】解:(1)=(cosx,sinx),=(3,),cosx=3sinx,tanx=,x0,x=,(2)f(x)=3cosxsinx=2(cosxsinx)=2cos(x+),x0,x+,1cos(
15、x+),当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值213(2017浙江)已知函数f(x)=sin2xcos2x2sinx cosx(xR)()求f()的值()求f(x)的最小正周期及单调递增区间【解答】解:函数f(x)=sin2xcos2x2sinx cosx=sin2xcos2x=2sin(2x+)()f()=2sin(2+)=2sin=2,()=2,故T=,即f(x)的最小正周期为,由2x+2k,+2k,kZ得:x+k,+k,kZ,故f(x)的单调递增区间为+k,+k或写成k+,k+,kZ14(2017上海)已知函数f(x)=cos2xsin2x+,x(0,
16、)(1)求f(x)的单调递增区间;(2)设ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求ABC的面积【解答】解:(1)函数f(x)=cos2xsin2x+=cos2x+,x(0,),由2k2x2k,解得kxk,kZ,k=1时,x,可得f(x)的增区间为,);(2)设ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=,即A=,由余弦定理可得a2=b2+c22bccosA,化为c25c+6=0,解得c=2或3,若c=2,则cosB=0,即有B为钝角,c=2不成立,则c=3,ABC的面积为S=bcsinA=53=第16页(共16页)