ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:44.68KB ,
资源ID:2156264      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2156264.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届高考数学统考一轮复习-微专题含exlnx与x的组合函数的解题策略学案新人教版.docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高考数学统考一轮复习-微专题含exlnx与x的组合函数的解题策略学案新人教版.docx

1、2022届高考数学统考一轮复习 微专题含exlnx与x的组合函数的解题策略学案新人教版2022届高考数学统考一轮复习 微专题含exlnx与x的组合函数的解题策略学案新人教版年级:姓名:微专题(十一)含ex,ln x与x的组合函数的解题策略近几年高考压轴题常以x与ex,ln x组合的函数为基础来命制,将基本初等函数的概念,图象与性质糅合在一起,发挥导数的工具作用,应用导数研究函数性质、证明相关不等式(或比较大小)、求参数的取值范围(或最值)预计今后高考试题除了延续往年的命题形式,还会更着眼于知识点的巧妙组合,注重对函数与方程、转化与化归、分类整合和数形结合等思想的灵活运用,突出对数学思维能力和数

2、学核心素养的考查策略一分离参数,设而不求例1已知函数f(x)ln x,h(x)ax(aR)(1)若函数f(x)的图象与h(x)的图象无公共点,求实数a的取值范围;(2)是否存在实数m,使得对任意的x,都有yf(x)的图象在g(x)的图象下方?若存在,请求出整数m的最大值;若不存在,请说明理由解析:(1)函数f(x)的图象与h(x)的图象无公共点,等价于方程a在(0,)上无解,令t(x),则t(x),令t(x)0,得xe.随着x的变化,t(x),t(x)的变化如下表所示x(0,e)e(e,)t(x)0t(x)单调递增极大值单调递减因为xe是函数t(x)唯一的极值点,所以t(x)maxt(e),故

3、要使方程a在(0,)上无解,需满足a,故实数a的取值范围为.(2)假设存在实数m满足题意,则不等式ln x对任意的x恒成立,即mexxln x对任意的x恒成立令v(x)exxln x,则v(x)exln x1,令(x)exln x1,则(x)ex.易知(x)在上单调递增,20且(x)的图象在上连续,所以存在唯一的x0,使得(x0)0,即0,则x0ln x0.当x时,(x)单调递减;当x(x0,)时,(x)单调递增则(x)在xx0处取得最小值,且最小值为(x0)ln x01x012110,所以v(x)0,即v(x)在上单调递增,所以mlnln 21.995 29,故存在整数m满足题意,且m的最大

4、值为1.名师点评本题分离参数后导数零点不可求,且不能通过观察得到,此时往往可以采用设而不求的方法在第(2)小问中,通过虚设零点x0得到x0ln x0,将ln x01转化为普通代数式x01,然后使用基本不等式求出最值,同时消掉x0,即借助(x0)0作整体代换,采取设而不求的方法,达到化简并求解的目的变式练1证明exln x2.策略二分离ln x与ex例2已知函数f(x)ax2xln x.(1)若函数f(x)在(0,)上单调递增,求实数a的取值范围;(2)若ae,证明:当x0时,f(x)0时,f(x)0,即2a恒成立令g(x)(x0),则g(x),易知g(x)在(0,1)上单调递增,在(1,)上单

5、调递减,则g(x)maxg(1)1,所以2a1,即a.故实数a的取值范围是.(2)证明:若ae,要证f(x)xex,只需证exln xex,即exex0),则h(x),易知h(x)在上单调递减,在上单调递增,则h(x)minh0,所以ln x0.再令(x)exex,则(x)eex,易知(x)在(0,1)上单调递增,在(1,)上单调递减,则(x)max(1)0,所以exex0.因为h(x)与(x)不同时为0,所以exex1时,不等式.策略三借助exx1和ln xx1进行放缩例3已知函数f(x)exa.(1)若函数f(x)的图象与直线l:yx1相切,求a的值;(2)若f(x)ln x0恒成立,求整

6、数a的最大值解析:(1)f(x)ex,因为函数f(x)的图象与直线yx1相切,所以令f(x)1,即ex1,得x0,即f(0)1,解得a2.(2)现证明exx1,设F(x)exx1,则F(x)ex1,令F(x)0,则x0,当x(0,)时,F(x)0,当x(,0)时,F(x)ln x,当a2时,ln x0恒成立当a3时,存在x,使exaln x不恒成立综上,整数a的最大值为2.名师点评利用exx1,ln xx1可将超越函数转化为一次函数,有效地降低了试题的难度变式练3已知函数f(x)ex,g(x)ln(xa)b.(1)若函数f(x)与g(x)的图象在点(0,1)处有相同的切线,求a,b的值;(2)

7、当b0时,f(x)g(x)0恒成立,求整数a的最大值微专题(十一)变式练1证明:设f(x)exln x(x0),则f(x)ex,令h(x)f(x),h(x)ex0,f(x)在(0,)上是增函数,又f20,函数f(x)在上存在极小值点x0且,即x0ln.f(x0)2,故f(x)2,即exln x2.变式练2解析:(1)f(x),曲线yf(x)在点(e,f(e)处的切线斜率为.又切线与直线e2xye0垂直,可得f(e),所以,a1,所以f(x),f(x)(x0),当0x0,f(x)为增函数;当x1时,f(x)0,f(x)为减函数所以x1是函数f(x)的极大值点又f(x)在(m,m1)上存在极值,所

8、以m1m1,即0m变形为分别构造函数g(x)和h(x),则g(x),令(x)xln x,则(x)1.因为x1,所以(x)0,所以(x)在(1,)上是增函数,所以(x)(1)10,所以g(x)0,所以g(x)在(1,)上是增函数,所以x1时,g(x)g(1)2,故,h(x),x1,1ex0.h(x)1时,h(x)h(x),即.变式练3解析:(1)因为函数f(x)和g(x)的图象在点(0,1)处有相同的切线,所以f(0)g(0)且f(0)g(0),解得a1,b1.(2)现证明exx1,设F(x)exx1,则F(x)ex1,当x(0,)时,F(x)0,当x(,0)时,F(x)ln(x2),当a2时,ln(xa)ln(x2)0恒成立,当a3时,e00不恒成立故整数a的最大值为2.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服