ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.31MB ,
资源ID:2134805      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2134805.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学解析几何大题专项练习.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学解析几何大题专项练习.doc

1、解析几何解答题1、椭圆G:的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为 (1)求此时椭圆G的方程; (2)设斜率为k(k0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由2、已知双曲线的左、右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为. ()求的取值范围,并求的最小值;()记直线的斜率为,直线的斜率为,那么,是定值吗?证明你的结论.3、已知抛物线的焦点为F,点为直线与抛物线准线的交点,直线与抛物线相交

2、于、两点,点A关于轴的对称点为D (1)求抛物线的方程。(2)证明:点在直线上;(3)设,求的面积。4、已知椭圆的中心在坐标原点,焦点在轴上,离心率为,点(2,3)、在该椭圆上,线段的中点在直线上,且三点不共线 (I)求椭圆的方程及直线的斜率; ()求面积的最大值5、设椭圆的焦点分别为、,直线: 交轴于点,且 ()试求椭圆的方程; ()过、分别作互相垂直的两直线与椭圆分别交于、四点(如图所示),若四边形的面积为,求的直线方程6、已知抛物线P:x2=2py (p0)()若抛物线上点到焦点F的距离为()求抛物线的方程;()设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;()设过焦

3、点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F7、在平面直角坐标系中,设点,以线段为直径的圆经过原点.()求动点的轨迹的方程;()过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.8、已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为()求椭圆的方程;()设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值9、过抛物线C:上一点作倾斜角互补的两条直线,分别与抛物线交于A、B两点。(1)求证:直线AB的斜率为定值;(2)已知两点均在抛物线:上,若的面积的最大值为6,

4、求抛物线的方程。10、已知椭圆的左焦点是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线交椭圆于C、D两点,记直线AD、BC的斜率分别为 (1)当点D到两焦点的距离之和为4,直线轴时,求的值; (2)求的值。11、在平面直角坐标系xOy中,已知椭圆(ab0)的离心率为,其焦点在圆x2+y2=1上(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角,使 (i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB212、已知圆的圆心为,一动圆与圆内切,与圆外切。()求动圆圆心的轨迹方程; ()()中轨迹上是否存在一点,使得为钝角?若

5、存在,求出点横坐标的取值范围;若不存在,说明理由13、已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足若点满足()求点的轨迹的方程;()设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由14、在平面直角坐标系中,已知圆B:与点,P为圆B上的动点,线段PA的垂直平分线交直线PB于点R,点R的轨迹记为曲线C。 (1)求曲线C的方程; (2)曲线C与轴正半轴交点记为Q,过原点O且不与轴重合的直线与曲线C的交点记为M,N,连结QM,QN,分别交直线为常数,且)于点E,F,设E,F的纵坐标分别为,求的值(用表示)。

6、答案:1、解:(1)根据椭圆的几何性质,线段F1F2与线段B1B2互相垂直平分,故椭圆中心即为该四点外接圆的圆心1分故该椭圆中即椭圆方程可为3分设H(x,y)为椭圆上一点,则4分若,则有最大值5分由(舍去)(或b2+3b+9|MN|由椭圆定义知,点P的轨迹是以M、N为焦点,焦距为,实轴长为4的椭圆其方程为 6分()假设存在,设(x,y).则因为为钝角,所以,又因为点在椭圆上,所以联立两式得:化简得:,解得:13、解:() 椭圆右焦点的坐标为, (1分),由,得 (2分)设点的坐标为,由,有,代入,得 (4分)()解法一:设直线的方程为,、,则, (5分)由,得, 同理得 (7分),则 (8分)由,得, (9分)则 (11分)因此,的值是定值,且定值为 (12分) 解法二:当时, 、,则, 由 得点的坐标为,则由 得点的坐标为,则 (6分)当不垂直轴时,设直线的方程为,、,同解法一,得 (8分)由,得, (9分)则 (11分)因此,的值是定值,且定值为 (12分),所以存在。 13分14、解:(1)连接,由题意得,所以,2分由椭圆定义得,点的轨迹方程是.4分(2)设,则,的斜率分别为,则,6分所以直线的方程为,直线的方程,8分令,则,10分又因为在椭圆,所以,所以,其中为常数.14分19

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服