ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:166.50KB ,
资源ID:2109522      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2109522.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学分类讨论问题专题.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学分类讨论问题专题.doc

1、_中考数学专题复习分类讨论问题 朱江敏使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。形成一定的分类体系,对待问题能有更严谨、缜密的思维。对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。1:分式方程无解的分类讨论问题 例题1:(2011武汉) 解:去分母,得: 猜想:把“无解”改为“有增根”如何解? 例题2:(2011郴州) 2:“一元二次”方程系数的分类讨论问题例题3:(2010上海)已知方程有实数根,求m的取值范围。(1) 当时,即m=0时,方程为一元一次方程x+1=0,有实数根x=(2) 当时

2、,方程为一元二次方程,根据有实数根的条件得:,且综(1)(2)得, 常见病症:(很多同学会从(2)直接开始而且会忽略的条件) 总结:字母系数的取值范围是否要讨论,要看清题目的条件。一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。 例题4:(2011益阳)当m是什么整数时,关于x的一元二次方程与的根都是整数。 解:因为是一元二次方程,所以二次项系数不为0,即,同理,且,又因为m为整数 (1)当m=1时,第一个方程的根为不是整数,所以m=1舍去。 (2)

3、当m=1时,方程1、2的根均为整数,所以m=1.练习:已知关于的一元二次方程有实数根,则的取值范围是:3:三角形、圆等几何图形相关量求解的分类讨论问题 例题:5:(2011青海)方程的两个根是等腰三角形的底和腰,则这个三角形的周长为() 12 12或15 15 不能确定例题6:(2011武汉)三角形一边长AB为13cm,另一边AC为15cm,BC上的高为12cm,求此三角形的面积。(54或84)析:,没有给图形的计算题得多留意多解;图形的可能性例题7:(2011湘西)若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为:3或11. ABC例题8:(2011四校联考)一条绳子对折后成右图

4、A、B, A.B上一点C,且有BC=2AC,将其从C点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为:60cm或120cm 分析:1、折点A、B都有可能;给了图形的指代不明导致多解 4:动点问题的分类分类讨论问题4.1:常见平面问题中动点问题的分类讨论;分段函数引起思考不同时段不同的关系例题9:(2011永州)正方形ABCD的边长为10cm,一动点P从点A出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。如图,回到A点停止,求点P运动t秒时, P,D两点间的距离。ABCD解:点P从A点出发,分别走到B,C,D,A所用时间是 秒, 秒, 秒, 秒,即5秒,10秒,15秒,20秒。

5、(1)当0t5时,点P在线段AB上,|PD|=|P1D|= (cm)(2)当5t10时,点P在线段BC上,|PD|=|P2D|= (3)当10t15时,点P在线段CD上,|PD|=|P3D|=30-2t(4)当15t20时,点P在线段DA上,|PD|=|P4D|=2t-30综上得:|PD|= 总结:本题从运动的观点,考查了动点P与定点D之间的距离,应根据P点的不同位置构造出不同的几何图形,将线段PD放在直角三角形中求解或直接观察图形求解。4.2:组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。例题10:(2010福建)已知一次函数与x轴、y轴的交点分别为A、B,试在x轴上找一点

6、P,使PAB为等腰三角形。分析:本题中PAB由于P点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。PAB是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB;(2)PA=AB;(3)PB=AB。先可以求出B点坐标,A点坐标(9,0)。设P点坐标为,利用两点间距离公式可对三种分类情况分别列出方程,求出P点坐标有四解,分别为。(不适合条件的解已舍去) 总结:解答本题极易漏解。解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。另外,由点的运动变化也会引起分类讨论。由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结

7、果,否则漏解。例11:(2010湖北)如图,正方形ABCD的边长是2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动当DM= 时,ABE与以D、M、N为项点的三角形相似MEABCDN。分析与解答 勾股定理可得AE=当ABE与以D、M、N为项点的三角形相似时,DM可以与BE是对应边,也可以与AB是对应边,所以本题分两种情况:(1) 当DM与BE是对应边时,即(2)当DM与AB是对应边时,即 故DM的长是例题12:(2011湘潭)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使

8、三角形ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由。ABCOQ说明 从以上各例可以看出,分灯思想在几何中的较为广泛这类试题的解题思路是:对具有位置关系的几何图形,要有分类讨论的意识,在熟悉几何问题所需要的基础知识的前提下,正确应用分类思想方法,恰当地选择分类标准,是准确全面求解的根本保证 解析:(1)抛物线解析式的求法:1,三点式;2,顶点式(h,k);3,交点式。 易得: (2) 依题意得,抛物线的对称轴为x=1,设Q(1,y)1) 以AQ为底,则有AB=QB,及解得,y=0或y=6,又因为点(1,6)在直线AB上(舍去),所以此时存在一点Q(1,0)2) 以BQ为底,同理则有AB=AQ,解的Q(1,) Q(1,)3) 以AB为底,同理则有QA=QB,存在点Q(1,1).综上,共存在四个点分别为:(1,0)、(1,1)、(1,) 、(1,)Welcome ToDownload !欢迎您的下载,资料仅供参考!精品资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服