1、八年级上册数学期末复习讲义第十二章 平面直角坐标系一、平面内点的坐标特征1、 各象限内点P(a ,b)的坐标特征: 第一象限:a0,b0;第二象限:a0;第三象限:a0,b0,b0;二、四象限,横、纵坐标符号相反即ab0k0直线经过一、二、三象限直线经过一、二、四象限b=0直线经过一、三象限及原点直线经过二、四象限及原点bk2k3 k4(按顺时针依次减小)(1) 设函数关系式为:y=k xb; (2)代入x和y的两对对应值,得关于k、b的方程组; (3)解方程组,求出k和b。5、 k和b的意义(1)k决定直线的“平陡”。k越大,直线越陡(或越靠近y轴);k越小,直线越平(或越远离y轴);(2)
2、b表示在y轴上的截距。(截距有正负之分)6、 由一次函数图像确定k、b的符号(1) 直线上升,k0;直线下降,k0;直线与y轴负半轴相交,ba(或xb(或yb)时,求x的范围。求法:直线y=b上方(或下方)图象所对应的x的取值范围。 (3)当axb时,求y的范围。求法:直线x=a和x=b之间的图象所对应的y的取值范围。(4)当ay0,n0(1)左右平移:直线y=k xb向右(或向左)平移m个单位后的解析式为y=k(xm)b或y=k(xm)b。(2)上下平移:直线y=k xb向上(或向下)平移n个单位后的解析式为y=k xbn或y=k xbn(说明:规律简记为“左加右减,上加下减”,左右对x而言
3、,上下对y而言。)11、 由图象确定两个一次函数函数值的大小 求一次函数表达式的常用方法已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b和y2=kx2+b(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。一次函数部分是历届中考的重要部分,有些同学对这一部分有抵触心理,感觉很难学很害怕学,因此学习过后成绩也很不理想,其实只要牢记这些基础知识再加以灵活的运用,相信一次函数也就没那么可怕
4、了!第十四章 三角形中的边角关系一、三角形的分类1、按边分类:2、按角分类:不等边三角形 直角三角形三角形 三角形 锐角三角形等腰三角形(等边三角形是特例) 斜三角形 钝角三角形 二、三角形的边角性质1、三角形的三边关系:三角形中任何两边的和大于第三边;任何两边的差小于第三边。2、三角形的三角关系:三角形内角和定理:三角形的三个内角的和等于180。三角形外角和定理:三角形的三个外角的和等于360。3、 三角形的外角性质 (1)三角形的一个外角等于与它不相邻的两个内角的和; (2)三角形的一个外角大于与它不相邻的任何一个内角。三、三角形的角平分线、中线和高(说明:三角形的角平分线、中线和高都是线
5、段)四、命题1、命题:凡是可以判断出真(正确)、假(错误)的语句叫做命题。2、命题分类 真命题:正确的命题 命题 假命题:错误的命题3、互逆命题 4、反例:符合命题条件,但不满足命题结论的例子,称为反例。 原命题:如果p,那么q; 逆命题:如果q,那么p。 (说明:交换一个命题的条件和结论就是它的逆命题。)第十五章 全等三角形一、性质:1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2:全等三角形有哪些性质?(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等
6、。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。二、判定:1、“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。(SAS)EFDACB在ABC和DEF中 AB=DE B=E BC=EF ABCDEF EFDACB2、“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。(ASA) 在ABC和DEF中 B=E BC=EF C=F ABCDEF 3、“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)EFDACB 在ABC和DEF中 B=E C=F AB=DE ABCDEF4、“边边边”定理:三边对应相等的两个三角形全等。(SSS)EFDACB
7、在ABC和DEF中 AB=DE BC=EF AC=DF ABCDEF 另外,判定两个直角三角形全等还有另一种方法。ABCDEF“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。(HL)在RtABC和RtDEF中 AB=DE AC=DF RtABCRtDEF三、方法指引证明两个三角形全等的基本思路: 找第三边(1):已知两边- 找夹角 找是否有直角 找这边的另一个邻角(ASA) 已知一边和它的邻角 找这个角的另一个边(SAS) 找这边的对角 (AAS) (2): 已知一边一角- 已知一边和它的对角 找一角(AAS) 已知角是直角,找一边(HL)(3): 已知两角- 找两角的夹边
8、(ASA) 找夹边外的任意边(AAS)要证明两条线段的和与一条线段相等时常用的两种方法:1、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割)2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补) 如图,已知ACBD,EA、EB分别平分CAB和DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。 四、学习全等三角形应注意以下几个问题:1) 要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应
9、相等”的两个三角形不一定全等;4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”、“余角”等。第十六章 轴对称图形与等腰三角形一、轴对称图形与轴对称1、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。这条直线叫做对称轴。(说明:轴对称图形的对称轴可以是一条,可能是多条或无数条。)2、 轴对称性质:(1) 如果两个图形关于某直线对称,那么对称轴垂直平分任意一对对应点的所连线段。(2) 如果两个图形各对对应点的所连线段被同一条直线垂直平分,那么这两个图形关于这条直线对称。二、 线段的垂直平分线1、定义:经过线段的中点,并且垂直于这
10、条线段的直线叫做这条线段的垂直平分线。2、性质:线段垂直平分线上的点与线段两端距离相等。PAB 直线l垂直平分AB,点P在l上 PA=PB ABP3、 判定:与线段两端距离相等的点在这条线段的垂直平分线上。 PA=PB 点P在AB的垂直平分线上三、等腰三角形1、定义:有两边相等的三角形叫做等腰三角形。2、性质:(1)等腰三角形两个底角相等。简称“等边对等角”。 推论:等边三角形三个内角相等,每一个内角等于60。 (2)等腰三角形顶角的平分线垂直平分底边。 (等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一)3、判定:如果一个三角形有两个角相等,那么这两个角所对的边相等。简称“等角对等边
11、”。 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角是60的等腰三角形是等边三角形。四、等边三角形1、 定义:三边都相等的三角形叫做等边三角形。2、 性质:等边三角形的三边相等;三个角都相等,每一个内角等于60。3、 判定:(1)定义法:三边都相等的三角形是等边三角形; (2)三个角都相等的三角形是等边三角形。 (3)有一个角是60的等腰三角形是等边三角形。五、角的平分线1、性质:角平分线上任意一点到角的两边的距离相等。2、判定:在一个角的内部,到角的两边的距离相等的点在这个角的平分线上。 六、直角三角形1、 定义:有一个角是90的三角形叫做直角三角形。3、在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100