ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:264.18KB ,
资源ID:2074257      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2074257.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(沪科版八年级数学上课本复习讲义.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

沪科版八年级数学上课本复习讲义.doc

1、八年级上册数学期末复习讲义第十二章 平面直角坐标系一、平面内点的坐标特征1、 各象限内点P(a ,b)的坐标特征: 第一象限:a0,b0;第二象限:a0;第三象限:a0,b0,b0;二、四象限,横、纵坐标符号相反即ab0k0直线经过一、二、三象限直线经过一、二、四象限b=0直线经过一、三象限及原点直线经过二、四象限及原点bk2k3 k4(按顺时针依次减小)(1) 设函数关系式为:y=k xb; (2)代入x和y的两对对应值,得关于k、b的方程组; (3)解方程组,求出k和b。5、 k和b的意义(1)k决定直线的“平陡”。k越大,直线越陡(或越靠近y轴);k越小,直线越平(或越远离y轴);(2)

2、b表示在y轴上的截距。(截距有正负之分)6、 由一次函数图像确定k、b的符号(1) 直线上升,k0;直线下降,k0;直线与y轴负半轴相交,ba(或xb(或yb)时,求x的范围。求法:直线y=b上方(或下方)图象所对应的x的取值范围。 (3)当axb时,求y的范围。求法:直线x=a和x=b之间的图象所对应的y的取值范围。(4)当ay0,n0(1)左右平移:直线y=k xb向右(或向左)平移m个单位后的解析式为y=k(xm)b或y=k(xm)b。(2)上下平移:直线y=k xb向上(或向下)平移n个单位后的解析式为y=k xbn或y=k xbn(说明:规律简记为“左加右减,上加下减”,左右对x而言

3、,上下对y而言。)11、 由图象确定两个一次函数函数值的大小 求一次函数表达式的常用方法已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b和y2=kx2+b(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。一次函数部分是历届中考的重要部分,有些同学对这一部分有抵触心理,感觉很难学很害怕学,因此学习过后成绩也很不理想,其实只要牢记这些基础知识再加以灵活的运用,相信一次函数也就没那么可怕

4、了!第十四章 三角形中的边角关系一、三角形的分类1、按边分类:2、按角分类:不等边三角形 直角三角形三角形 三角形 锐角三角形等腰三角形(等边三角形是特例) 斜三角形 钝角三角形 二、三角形的边角性质1、三角形的三边关系:三角形中任何两边的和大于第三边;任何两边的差小于第三边。2、三角形的三角关系:三角形内角和定理:三角形的三个内角的和等于180。三角形外角和定理:三角形的三个外角的和等于360。3、 三角形的外角性质 (1)三角形的一个外角等于与它不相邻的两个内角的和; (2)三角形的一个外角大于与它不相邻的任何一个内角。三、三角形的角平分线、中线和高(说明:三角形的角平分线、中线和高都是线

5、段)四、命题1、命题:凡是可以判断出真(正确)、假(错误)的语句叫做命题。2、命题分类 真命题:正确的命题 命题 假命题:错误的命题3、互逆命题 4、反例:符合命题条件,但不满足命题结论的例子,称为反例。 原命题:如果p,那么q; 逆命题:如果q,那么p。 (说明:交换一个命题的条件和结论就是它的逆命题。)第十五章 全等三角形一、性质:1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2:全等三角形有哪些性质?(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等

6、。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。二、判定:1、“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。(SAS)EFDACB在ABC和DEF中 AB=DE B=E BC=EF ABCDEF EFDACB2、“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。(ASA) 在ABC和DEF中 B=E BC=EF C=F ABCDEF 3、“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)EFDACB 在ABC和DEF中 B=E C=F AB=DE ABCDEF4、“边边边”定理:三边对应相等的两个三角形全等。(SSS)EFDACB

7、在ABC和DEF中 AB=DE BC=EF AC=DF ABCDEF 另外,判定两个直角三角形全等还有另一种方法。ABCDEF“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。(HL)在RtABC和RtDEF中 AB=DE AC=DF RtABCRtDEF三、方法指引证明两个三角形全等的基本思路: 找第三边(1):已知两边- 找夹角 找是否有直角 找这边的另一个邻角(ASA) 已知一边和它的邻角 找这个角的另一个边(SAS) 找这边的对角 (AAS) (2): 已知一边一角- 已知一边和它的对角 找一角(AAS) 已知角是直角,找一边(HL)(3): 已知两角- 找两角的夹边

8、(ASA) 找夹边外的任意边(AAS)要证明两条线段的和与一条线段相等时常用的两种方法:1、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割)2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补) 如图,已知ACBD,EA、EB分别平分CAB和DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。 四、学习全等三角形应注意以下几个问题:1) 要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应

9、相等”的两个三角形不一定全等;4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”、“余角”等。第十六章 轴对称图形与等腰三角形一、轴对称图形与轴对称1、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。这条直线叫做对称轴。(说明:轴对称图形的对称轴可以是一条,可能是多条或无数条。)2、 轴对称性质:(1) 如果两个图形关于某直线对称,那么对称轴垂直平分任意一对对应点的所连线段。(2) 如果两个图形各对对应点的所连线段被同一条直线垂直平分,那么这两个图形关于这条直线对称。二、 线段的垂直平分线1、定义:经过线段的中点,并且垂直于这

10、条线段的直线叫做这条线段的垂直平分线。2、性质:线段垂直平分线上的点与线段两端距离相等。PAB 直线l垂直平分AB,点P在l上 PA=PB ABP3、 判定:与线段两端距离相等的点在这条线段的垂直平分线上。 PA=PB 点P在AB的垂直平分线上三、等腰三角形1、定义:有两边相等的三角形叫做等腰三角形。2、性质:(1)等腰三角形两个底角相等。简称“等边对等角”。 推论:等边三角形三个内角相等,每一个内角等于60。 (2)等腰三角形顶角的平分线垂直平分底边。 (等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一)3、判定:如果一个三角形有两个角相等,那么这两个角所对的边相等。简称“等角对等边

11、”。 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角是60的等腰三角形是等边三角形。四、等边三角形1、 定义:三边都相等的三角形叫做等边三角形。2、 性质:等边三角形的三边相等;三个角都相等,每一个内角等于60。3、 判定:(1)定义法:三边都相等的三角形是等边三角形; (2)三个角都相等的三角形是等边三角形。 (3)有一个角是60的等腰三角形是等边三角形。五、角的平分线1、性质:角平分线上任意一点到角的两边的距离相等。2、判定:在一个角的内部,到角的两边的距离相等的点在这个角的平分线上。 六、直角三角形1、 定义:有一个角是90的三角形叫做直角三角形。3、在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服