ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:262.71KB ,
资源ID:2053522      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2053522.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学必修2知识点总结第四章-圆与方程.pdf)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学必修2知识点总结第四章-圆与方程.pdf

1、第四章第四章 圆与方程圆与方程 知识点与习题知识点与习题1.1、圆的定义:、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。设 M(x,y)为A 上任意一点,则圆的集合可以写作:P=M|MA|=r 2、圆的方程、圆的方程(1)标准方程标准方程222rbyax,圆心ba,,半径为 r;点与圆的位置关系:00(,)M xy222()()xaybr当,点在圆外;当=,点在圆上2200()()xayb2r2200()()xayb2r当,点在圆内;2200()()xayb2r(2)一般方程一般方程022FEyDxyx (x+D/2)2+(y+E/2)2=(D2+E2-

2、4F)/4 (0422FED)当当0422FED时,方程表示圆,此时圆心为时,方程表示圆,此时圆心为2,2ED,半径为,半径为FEDr42122 当当0422FED时,表示一个点;时,表示一个点;当当0422FED时,方程不表示任何图形。时,方程不表示任何图形。(3)求圆的方程的方法:)求圆的方程的方法:待定系数法:先设后求。待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r;若利用一般方程,需要求出 D,E,F;直接法:直接法:直接根据已知条件求出圆心坐标以及半径长度。另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置另外要注意多

3、利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。3、直线与圆的位置关系:、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交相离,相切,相交三种情况:(1)设直线0:CByAxl,圆222:rbyaxC,圆心baC,到l的距离为22BACBbAad,则有相离与Clrd;相切与Clrd;相交与Clrd(2)过圆外一点的切线过圆外一点的切线:设点斜式方程,用圆心到该直线距离圆心到该直线距离=半径半径,求解 k,若求得两个不同的解,带入所设切线的方程即可;若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3)过

4、圆上一点的切线过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 两圆的位置关系判断条件公切线条数外离1+24 条外切1+23 条相交|1-2|1+22 条4、圆与圆的位置关系:、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆221211:rbyaxC,222222:RbyaxC两圆的位置关系常通过两圆半径的和(差的绝对值)两圆的位置关系常通过两圆半径的和(差的绝对值),与圆心距(,与圆心距(d)之间的大小比较来确定。)之间的大小比较来确定。(即几何法)

5、(即几何法)注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、.圆 C1:x2+y2+D1x+E1y+F1=0 圆 C2:x2+y2+D2x+E2y+F2=0 联立圆 C1的方程与圆 C2的方程得到一个二元一次方程 若两圆相交,则该二元一次方程表示:圆 C1与圆 C2公共弦所在的直线方程公共弦所在的直线方程;若两圆相切,则该二元一次方程表示:圆 C1与圆 C2的公切线的方程;若两圆外离,则该二元一次方程表示的直线具有一个性质:从直线上任意一点向两个圆引切线向两个圆引切线,得到的切线长相等切线长相等(反之,亦成立)(反之,亦成立)6、已知一直线与圆相交,求弦的长度、已知一直

6、线与圆相交,求弦的长度 代数法:联立圆与直线的方程求出交点坐标交点坐标,利用两点间的距离公式两点间的距离公式求弦长 几何法:半弦长、弦心距、半径构成直角三角形(勾股定理)7、已知两圆相交,求公共弦的长度、已知两圆相交,求公共弦的长度代数法:联立两圆的方程求出交点坐标交点坐标;利用两点间的距离公式两点间的距离公式求弦长几何法:半弦长、弦心距、半径构成直角三角形(勾股定理)8、圆系与圆系方程、圆系与圆系方程(1)圆系:具有某种共同属性的圆的集合,称为圆系。(2)圆系方程:圆 C1:x2+y2+D1x+E1y+F1=0 圆 C2:x2+y2+D2x+E2y+F2=0 圆系方程:x2+y2+D1x+E

7、1y+F1+(x2+y2+D2x+E2y+F2)=0 ()若圆 C1与圆 C2交于 P1、P2点,那么,方程()代表过 P1、P2两点的圆的方程。若圆 C1与圆 C2交于 P 点(一个点),则方程()代表过 P 点的圆的方程。9、直线与圆的方程的应用、直线与圆的方程的应用用坐标法解决平面几何问题的“三部曲”:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;内切|1-2|1 条内含|1-2|0 条第三步:将代数运算结果“翻译”成几何结论10、空间直角坐标系、空间直角坐标系1、点 M 对应着唯一确定的有序实数组,

8、、分别是 P、Q、R 在、轴上的坐标),(zyxxyzxyz2、有序实数组,对应着空间直角坐标系中的一点),(zyx3、空间中任意点 M 的坐标都可以用有序实数组来表示,该数组叫做点 M 在此空间直角坐标系中的坐标,记 M),(zyx,叫做点 M 的横坐标,叫做点 M 的纵坐标,叫做点 M 的竖坐标。),(zyxxyz11、空间两点间的距离公式、空间两点间的距离公式1、空间中任意一点到点之间的距离公式),(1111zyxP),(2222zyxP22122122121)()()(zzyyxxPP一、选择题(本大题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合

9、题目要求的)1已知两圆的方程是 x2y21 和 x2y26x8y90,那么这两个圆的位置关系是()A相离B相交C外切 D内切解析:将圆 x2y26x8y90,化为标准方程得(x3)2(y4)216.两圆的圆心距5,032042又 r1r25,两圆外切答案:C2过点(2,1)的直线中,被圆 x2y22x4y0 截得的最长弦所在的直线方程为()A3xy50 B3xy70Cx3y50 Dx3y10解析:依题意知,所求直线通过圆心(1,2),由直线的两点式方程得,即 3xy50.y212x121答案:A3若直线(1a)xy10 与圆 x2y22x0 相切,则 a 的值为()A1,1 B2,2C1 D1

10、解析:圆 x2y22x0 的圆心 C(1,0),半径为 1,依题意得1,即|1a01|1a21|a2|,平方整理得 a1.a121答案:D4经过圆 x2y210 上一点 M(2,)的切线方程是()6Axy100 B.x2y10066Cxy100 D2xy10066解析:点 M(2,)在圆 x2y210 上,kOM,662过点 M 的切线的斜率为 k,63故切线方程为 y(x2),663即 2xy100.6答案:D5点 M(3,3,1)关于 xOz 平面的对称点是()A(3,3,1)B(3,3,1)C(3,3,1)D(3,3,1)解析:点 M(3,3,1)关于 xOz 平面的对称点是(3,3,1

11、)答案:D6若点 A 是点 B(1,2,3)关于 x 轴对称的点,点 C 是点 D(2,2,5)关于 y 轴对称的点,则|AC|()A5 B.13C10 D.10解析:依题意得点 A(1,2,3),C(2,2,5)|AC|.21222253213答案:B7若直线 ykx1 与圆 x2y21 相交于 P、Q 两点,且POQ120(其中 O 为坐标原点),则 k 的值为()A.B.32C.或 D.和3322解析:由题意知,圆心 O(0,0)到直线 ykx1 的距离为,12,k.11k2123答案:C8与圆 O1:x2y24x4y70 和圆 O2:x2y24x10y130 都相切的直线条数是()A4

12、 B3C2 D1解析:两圆的方程配方得,O1:(x2)2(y2)21,O2:(x2)2(y5)216,圆心 O1(2,2),O2(2,5),半径 r11,r24,|O1O2|5,r1r25.222522|O1O2|r1r2,两圆外切,故有 3 条公切线答案:B9直线 l 将圆 x2y22x4y0 平分,且与直线 x2y0 垂直,则直线 l 的方程是()A2xy0 B2xy20Cx2y30 Dx2y30解析:依题意知,直线 l 过圆心(1,2),斜率 k2,l 的方程为 y22(x1),即 2xy0.答案:A10圆 x2y2(4m2)x2my4m24m10 的圆心在直线 xy40 上,那么圆的面

13、积为()A9 BC2 D由 m 的值而定解析:x2y2(4m2)x2my4m24m10,x(2m1)2(ym)2m2.圆心(2m1,m),半径 r|m|.依题意知 2m1m40,m1.圆的面积 S12.答案:B11当点 P 在圆 x2y21 上变动时,它与定点 Q(3,0)的连结线段 PQ 的中点的轨迹方程是()A(x3)2y24 B(x3)2y21C(2x3)24y21 D(2x3)24y21解析:设 P(x1,y1),Q(3,0),设线段 PQ 中点 M 的坐标为(x,y),则 x,y,x12x3,y12y.x132y12又点 P(x1,y1)在圆 x2y21 上,(2x3)24y21.故

14、线段 PQ 中点的轨迹方程为(2x3)24y21.答案:C12曲线 y1与直线 yk(x2)4 有两个交点,则实数 k 的取值范围是()4x2A(0,)B(,)512512C(,D(,133451234解析:如图所示,曲线 y14x2变形为 x2(y1)24(y1),直线 yk(x2)4 过定点(2,4),当直线 l 与半圆相切时,有2,解得 k.|2k41|k21512当直线 l 过点(2,1)时,k.34因此,k 的取值范围是0.故方程表示圆心为(k,2k5),半径为|k1|的圆5设圆心的坐标为(x,y),则Error!Error!消去 k,得 2xy50.这些圆的圆心都在直线 2xy50 上(2)证明:将原方程变形为(2x4y10)k(x2y210y20)0,上式对于任意 k1 恒成立,Error!Error!解得Error!Error!曲线 C 过定点(1,3)(3)圆 C 与 x 轴相切,圆心(k,2k5)到 x 轴的距离等于半径,即|2k5|k1|.5两边平方,得(2k5)25(k1)2,k53.5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服