1、八年级数学上学期压轴题强化综合检测试题(一)1已知:AD为ABC的中线,分别以AB和AC为一边在ABC的外部作等腰三角形ABE和等腰三角形ACF,且AEAB,AFAC,连接EF,EAF+BAC180(1)如图1,若ABE65,ACF75,求BAC的度数(2)如图1,求证:EF2AD(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且BAE60,请探究GAF和CAF的数量关系,并证明你的结论3已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证
2、:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由3如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:4(1)模型:如图1,在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:5如图,在平面直角坐标系中,已知点,且,为轴上点右侧的动点,以为腰作等腰,使,直线交轴于点(1)求证:;(2)求证:;(3)当点运动时,点在轴上的位
3、置是否发生变化,为什么?6完全平方公式:适当的变形,可以解决很多的数学问题例如:若,求的值解:因为所以所以得根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;若则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积7如图1,将两块全等的三角板拼在一起,其中ABC的边BC在直线l上,ACBC且AC = BC;EFP的边FP也在直线l上,边EF与边AC重合,EFFP且EF = FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将三角板EFP沿直线l向左平移到图2的位置时,EP交AC于点
4、Q,连接AP、BQ猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将三角板EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由8如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG45【参考答案】2(1
5、)BAC50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解解析:(1)BAC50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解决问题;(2)延长AD至H,使DHAD,连接BH,想办法证明ABHEAF即可解决问题;(3)结论:GAFCAF60想办法证明ACDFAG,推出ACDFAG,再证明BCF150即可(1)解:AEAB,AEBABE65,EAB50,ACAF,ACFAFC75,CAF30,EAF+BAC
6、180,EAB+2ABC+FAC180,50+2BAC+30180,BAC50(2)证明:证明:如图,延长AD至点H,使DH=AD,连接BHAD是ABC的中线,BD=DC,又DH=AD,BDH=ADCADCHDB(SAS),BH=AC,BHD=DAC,BH=AF,BHD=DAC,BHAC,BAC+ABH=180,又EAF+BAC=180,ABH=EAF,又AB=AE,BH=AF,AEFBAH(SAS),EF=AH=2AD,EF2AD;(3)结论:GAFCAF60理由:由(2)得,ADEF,又点G为EF中点,EGAD,由(2)AEFBAH,AEG=BAD,在EAG和ABD中,EAGABD,EAG
7、ABC60,AG=BD,AEB是等边三角形,AG=CD,ABE60,CBM60,在ACD和FAG中,ACDFAG,ACDFAG,ACAF,ACFAFC,在四边形ABCF中,ABC+BCF+CFA+BAF360,60+2BCF360,BCF150,BCA+ACF150,GAF+(180CAF)150,GAFCAF60【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题3(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意
8、,先求出BEC=30,然后求出CF解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,A
9、EB=ABE,BAC=60,EAC=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CEF中,CFE=90,CEF=30,CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=ABC=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=
10、EG=HG,HG是两平行线之间的距离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题4(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=C
11、BQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE,OT=AG,由“SAS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:(1)a2-2ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点C作CQPQ,交PQ于点Q,四边形AOBP是矩形,AO=BP=6,AP
12、=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPBCQ(SAS),AB=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+ADO=OAD+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE,OT=AG,BAC=45,TAD=EAD=45,又AD=AD,TAD
13、EAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,EF=ED=TD=OT+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键5(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=A
14、C,根据题意可证ACDAED,从而可求出,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证ADCAEM,故而得出AE为BAM的角平分线,即,即可得出答案;【详解】解:(1)AD平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,ADCAEM(S
15、AS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,故 ,BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;6(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;解析:(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)设,由
16、全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论【详解】解:(1)证明:,解得,作于点,在与中,;(2)证明:,即,在与中,;(3)点在轴上的位置不发生改变理由:设,由(2)知,为定值,长度不变,点在轴上的位置不发生改变【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键7(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代入计算;(3)由题意可得:,两边平方从而解析:(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边
17、平方,再将代入计算;两边平方,再将代入计算;(3)由题意可得:,两边平方从而得到,即可算出结果【详解】解:(1);又;,(2),;又,由,;又,(3)由题意可得,;,;,;图中阴影部分面积为直角三角形面积,【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题(2)小题都需要根据题意得出两个因式和或者差的结果,合并同类项得,是解决本题的关键,再根据完全平方公式变形应用得出答案(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案8(1)AB=AP,ABAP;(2)BQ=AP,BQAP;(3)成立,
18、见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,BAC=PAC=45,求出BAP=90即可;(2解析:(1)AB=AP,ABAP;(2)BQ=AP,BQAP;(3)成立,见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,BAC=PAC=45,求出BAP=90即可;(2)求出CQ=CP,根据SAS证BCQACP,推出AP=BQ,CBQ=PAC,根据三角形内角和定理求出CBQ+BQC=90,推出PAC+AQG=90,求出AGQ=90即可;(3)BO与AP所满足的数量关系为相等,位置关系为垂直证明方法与(2)一样【详解】(1)AB=AP且ABAP,证明:ACBC且AC=BC,A
19、BC为等腰直角三角形,BAC=ABC=,又ABC与EFP全等,同理可证PEF=45,BAP=45+45=90,AB=AP且ABAP;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是APBQ,证明:延长BQ交AP于G,由(1)知,EPF=45,ACP=90,PQC=45=QPC,CQ=CP,ACB=ACP=90,AC=BC,在BCQ和ACP中 BCQACP(SAS),AP=BQ,CBQ=PAC,ACB=90,CBQ+BQC=90,CQB=AQG,AQG+PAC=90,AGQ=180-90=90,APBQ;(3)成立证明:如图,EPF=45,CPQ=45ACBC,CQP=CPQ,CQ=CP
20、在RtBCQ和RtACP中, RtBCQRtACP(SAS)BQ=AP;延长BQ交AP于点N,PBN=CBQRtBCQRtACP,BQC=APC在RtBCQ中,BQC+CBQ=90,APC+PBN=90PNB=90BQAP【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等也考查了等腰直角三角形的判定与性质9(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100