ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:1.29MB ,
资源ID:1886819      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1886819.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年江苏省灌南县九年级数学第一学期期末监测模拟试题含解析.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年江苏省灌南县九年级数学第一学期期末监测模拟试题含解析.doc

1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1在下列四个函数中,当时,随的增大而减小的函数是( )ABCD2下列函数中,函数值随自变量x的值增大而增大的是( )ABCD3如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为( )ABCD4下列函数关系式中,是的反比例函数的是( )ABCD5如图,如果增加一个条件就能使结论成

2、立,那么这个条件可以是ABCD6已知反比例函数的表达式为,它的图象在各自象限内具有 y随x的增大而增大的特点,则k的取值范围是( )Ak-2BCD7如图,AC是电杆AB的一根拉线,现测得BC=6米,ABC=90,ACB=52,则拉线AC的长为()米.ABCD8如图,PA与 PB 分别与圆O相切与A、B 两点,P=80o ,则C =( )A45B50C55D609如图,AB为O的直径,CD为O的弦,ACD=40,则BAD的大小为( )A60B30C45D5010在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0

3、.6左右,则布袋中黑球的个数可能有( )A24B36C40D9011一元二次方程的根是( )ABCD12下列事件中,是随机事件的是( )A任意画两个直角三角形,这两个三角形相似B相似三角形的对应角相等CO的半径为5,OP3,点P在O外D直径所对的圆周角为直角二、填空题(每题4分,共24分)13一元二次方程(x1)21的解是_14如果3a4b(a、b都不等于零),那么_15计算:sin45_16如图,在中,若,则_17如图,AB是O的直径,AC是O的切线,A为切点,连接BC交O于点D,若C=50,则AOD=_18如图,RtABC中,ACB90,BC3,tanA,将RtABC绕点C顺时针旋转90得

4、到DEC,点F是DE上一动点,以点F为圆心,FD为半径作F,当FD_时,F与RtABC的边相切三、解答题(共78分)19(8分)(1)如图1,在ABC中,ABAC,点D,E分别在边AB,AC上,且DEBC,若AD2,AE,则的值是 ;(2)如图2,在(1)的条件下,将ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,ACBC于点C,BACADC,且tan,当CD6,AD3时,请直接写出线段BD的长度20(8分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB16,点D

5、与点A关于y轴对称,tanACB,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且CEFACB(1)求AC的长和点D的坐标;(2)求证:;(3)当EFC为等腰三角形时,求点E的坐标21(8分)佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用设每间房每天的定价增加元,宾馆获利为元(1)求与的函数关系式(不用写出自变量的取值范围) ;(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?22(10

6、分)如图,已知直线yx+2与x轴、y轴分别交于点B,C,抛物线yx2+bx+c过点B、C,且与x轴交于另一个点A(1)求该抛物线的表达式;(2)若点P是x轴上方抛物线上一点,连接OP若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标在抛物线上是否存在点P,使得POCACO若存在,求出点P坐标;若不存在,请说明理由23(10分)(1)2y2+4yy+2(用因式分解法)(2)x27x180(用公式法)(3)4x28x30(用配方法)24(10分)一个小球沿着足够长的光滑斜面向上滚动,它的速度与时间满足一次函数关系,其部分数据如下表:(1) 求小球的速度v与时间t的关系.(2)小球在运动过程

7、中,离出发点的距离S与v的关系满足 ,求S与t的关系式,并求出小球经过多长时间距离出发点32m?(3)求时间为多少时小球离出发点最远,最远距离为多少?25(12分)已知是一张直角三角形纸片,其中,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.26已知二次函数(1)求证:无论m取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为正数,求m的最小整数值参考答案一、选择题(每题4分,共48分)1、B【分析】分别根据正比例函数、反比例函数、一次函数和二次函数的性质逐项判

8、断即得答案【详解】解:A、,当时,函数是随着增大而增大,故本选项错误;B、,当时,函数是随着增大而减小,故本选项正确;C、,当时,函数是y随着增大而增大,故本选项错误;D、函数,当时,随着增大而减小,当时,随着增大而增大,故本选项错误故选:B【点睛】本题考查了初中阶段三类常见函数的性质,属于基础题型,熟练掌握一次函数、反比例函数和二次函数的性质是解题的关键2、A【解析】一次函数当时,函数值总是随自变量的增大而增大,反比例函数当时,在每一个象限内,随自变量增大而增大.【详解】、该函数图象是直线,位于第一、三象限,随增大而增大,故本选项正确;、该函数图象是直线,位于第二、四象限,随增大而减小,故本

9、选项错误;、该函数图象是双曲线,位于第一、三象限,在每一象限内,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第二、四象限,在每一象限内,随增大而增大,故本选项错误.故选:.【点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.3、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为66=36,阴影部分面积为,所以,P落在三角形内的概率是. 故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比分别求出相关图形面积,再求比.4、C

10、【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k0.5、D【解析】求出DAE=BAC,根据选项条件判定三角形相似后,可得对应边成比例,再把比例式化为等积式后即可判断【详解】解:1=2,1+BAE=2+BAE,DAE=BAC,A、DAE=BAC,D=C,ADEACB,故本选项错误;B、,DAE=BAC,ADEACB,故本选项错误;C、,DAE=BAC,ADEACB,故本选项错误;D、DAE=BAC,ADEABC,故本选项正确;故选:D【点睛】本题考查了相似三角形的判

11、定和性质的应用,比例式化等积式,特别要注意确定好对应边,不要找错了6、C【分析】先根据反比例数的图象在每一象限内y随x的增大而增大得出关于k的不等式,求出k的取值范围即可【详解】解:反比例数的图象在每一象限内y随x的增大而增大,0,解得k-1故选:C【点睛】本题考查的是反比例函数的性质,熟知反比例函数(k0)中,当k0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键7、C【分析】根据余弦定义:即可解答【详解】解:,米,米;故选C【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义8、B【分析】连接AO,B

12、O,根据题意可得PAO=PBO=90,根据P=80得出AOB=100,利用圆周角定理即可求出C【详解】解:连接AO,BO,PA与 PB 分别与圆O相切与A、B 两点,PAO=PBO=90,P=80,AOB=360-90-90-80=100,C=,故选:B【点睛】本题考查了切线的性质以及圆周角定理,解题的关键是熟知切线的性质以及圆周角定理的内容9、D【分析】把DAB归到三角形中,所以连结BD,利用同弧所对的圆周角相等,求出A的度数,AB为直径,由直径所对圆周角为直角,可知DAB与B互余即可【详解】连结BD,同弧所对的圆周角相等,B=C=40,AB为直径,ADB=90,DAB+B=90,DAB=9

13、0-40=50故选择:【点睛】本题考查圆周角问题,关键利用同弧所对圆周角转化为三角形的内角,掌握直径所对圆周角为直角,会利用余角定义求角10、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个故选D【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.11、D【解析】x23x=0,x(x3)=0,x1=0,x2=3.故选:D.12、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A、

14、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B、相似三角形的对应角相等是必然事件,故不符合题意;C、O的半径为5,OP3,点P在O外是不可能事件,故不符合题意;D、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识.二、填空题(每题4分,共24分)13、x2或0【分析】根据一元

15、二次方程的解法即可求出答案【详解】解:(x1)21,x11,x2或0故答案为:x2或0【点睛】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程14、【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案【详解】3a4b(a、b都不等于零),设a4x,则b3x,那么故答案为:【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键15、1【分析】根据sin45代入计算即可【详解】sin45,故答案为:1【点睛】本题考查特殊角的三角函数值,熟练记忆是关键16、6【分析】先根据平行四边形的性质证得BEGFAG

16、,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:四边形ABCD是平行四边形,AD=BC,ADBC,BEGFAG,.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.17、80【详解】解:AC是O的切线,ABAC,C=50,B=90C=40,OA=OB,ODB=B=40,AOD=80故答案为8018、或【分析】如图1,当F与RtABC的边AC相切时,切点为H,连接FH,则HFAC,解直角三角形得到AC4

17、,AB5,根据旋转的性质得到DCEACB90,DEAB5,CDAC4,根据相似三角形的性质得到DF;如图2,当F与RtABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为F的直径,根据相似三角形的性质即可得到结论【详解】如图1,当F与RtABC的边AC相切时,切点为H,连接FH,则HFAC,DFHF,RtABC中,ACB90,BC3,tanA,AC4,AB5,将RtABC绕点C顺时针旋转90得到DEC,DCEACB90,DEAB5,CDAC4,FHAC,CDAC,FHCD,EFHEDC,解得:DF;如图2,当F与RtABC的边AC相切时,延长DE交AB于H,AD,AEHDECAHE

18、90,点H为切点,DH为F的直径,DECDBH,DH,DF,综上所述,当FD或时,F与RtABC的边相切,故答案为:或【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键三、解答题(共78分)19、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明ABDACE,得出(3)作AECD于E,DMAC于M,DNBC于N,则DMCN,DNMC,由三角函数定义得出,得出,求出AEAD,DEAE,得出CECDDE,由勾股定理得出AC,得出BCAC,由面积法求出CNDM,得出BNBC+CN,由勾股定

19、理得出AM,得出DNMCAM+AC,再由勾股定理即可得出答案【详解】(1)DEBC,;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DEB,ADEABC,由旋转的性质得:BADCAE,ABDACE,;(3)作AECD于E,DMAC于M,DNBC于N,如图3所示:则四边形DMCN是矩形,DMCN,DNMC,BACADC,且tan,AEAD3,DEAE,CECDDE6,ACBCAC,ACD的面积ACDMCDAE,CNDM,BNBC+CN,AM,DNMCAM+AC,BD【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定

20、理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键20、(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(,0)【分析】(1)在RtABC中,利用三角函数和勾股定理即可求出BC、AC的长度,从而得到A点坐标,由点D与点A关于y轴对称,进而得到D点的坐标;(2)欲证,只需证明AEF与DCE相似,只需要证明两个对应角相等即可在AEF与DCE中,易知CAOCDE,再利用三角形的外角性质证得AEFDCE,问题即得解决;(3)当EFC为等腰三角形时,有三种情况,需要分类讨论:当CEEF时,此时AEF与DCE相似比为1,则有AECD,即可求出E点坐标

21、;当EFFC时,利用等腰三角形的性质和解直角三角形的知识易求得CE,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;当CECF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在【详解】解:(1)四边形ABCO为矩形,B=90,AB16,tanACB,解得:BC12=AO,AC20,A点坐标为(12,0),点D与点A关于y轴对称,D(12,0);(2)点D与点A关于y轴对称,CAOCDE,CEFACB,ACBCAO,CDECEF,又AECAEF+CEFCDE+DCE,AEFDCE,AEFDCE;(3)当EFC为等腰三角形时,有以下三种情况:当CEEF时,AEFDCE,AEFDC

22、E,AECD20,OEAEOA20128,E(8,0);当EFFC时,如图1所示,过点F作FMCE于M,则点M为CE中点,CE2ME2EFcosCEF2EFcosACBAEFDCE,即:,解得:AE,OEAEOA,E(,0)当CECF时,则有CFECEF,CEFACBCAO,CFECAO,即此时F点与A点重合,E点与D点重合,这与已知条件矛盾所以此种情况的点E不存在,综上,当EFC为等腰三角形时,点E的坐标是(8,0)或(,0)【点睛】本题综合考查了矩形的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质、轴对称的性质、三角形的外角性质以及解直角三角形等知识,熟练掌握相似三角形的判定与性

23、质是解题关键难点在于第(3)问,当EFC为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.21、(1);(2)每间房价为元时,宾馆可获利元【分析】(1)根据题意表示出每间房间的利润和房间数,进而求得答案; (2)代入(1)求出的函数式,解方程即可,注意要符合条件的.【详解】解:由题意得答: 与的函数关系式为:由可得:令,即解得解得此时每间房价为: (元)答:每间房价为元时,宾馆可获利元。【点睛】本题考查的是盈利问题的二次函数式及二次函数的最值问题,通常做法是先列出二次函数式,然后利用y最值或化成顶点式进行求解.用代数表示每间房间的利润和房间数是关键.22、(2)yx2+x+2;(2)点P

24、坐标为(2,3);存在点P(,2)或(,7)使得POCACO【分析】(2)与x轴、y轴分别交于点B(4,0)、C(0,2),由题意可得即可求解;(2)过点P作PEOC,交BC于点E根据题意得出OCDPED,从而得出PEOC2,再根据 即可求解;当点P在y轴右侧,POAC时,POC=ACO抛物线与x轴交于A,B两点,点A在点B左侧,则点A坐标为(-2,0)则直线AC的解析式为y=2x+2直线OP的解析式为y=2x,即可求解;当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时,POC=ACO,根据等腰三角形三线合一,则CF=OF=2,可得:点G坐标为即可求解【详解】(2)yx+2与x轴、y

25、轴分别交于点B(4,0)、C(0,2)由题意可得,解得:,抛物线的表达式为yx2+x+2;(2)如图,过点P作PEOC,交BC于点E点D为OP的中点,OCDPED(AAS),PEOC2,设点P坐标为(m,m2+m+2),点E坐标为(m,m+2),则PE(m2+m+2)(m+2)m2+2m2,解得m2m22点P坐标为(2,3);存在点P,使得POCACO理由:分两种情况讨论如上图,当点P在y轴右侧,POAC时,POCACO抛物线与x轴交于A,B两点,点A在点B左侧,点A坐标为(2,0)直线AC的解析式为y2x+2直线OP的解析式为y2x,解方程组,解得:x(舍去负值)点P坐标为(,2)如图,当点

26、P在y轴右侧,设OP与直线AC交于点G,当CGOG时POCACO,过点G作GFOC,垂足为F根据等腰三角形三线合一,则CFOF2可得点G坐标为(,2)直线OG的解析式为y2x;把y2x代入抛物线表达式并解得x(不合题意值已舍去)点P坐标为(,7)综上所述,存在点P(,2)或(,7)使得POCACO【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形、等腰三角形的性质等,其中(2),要注意分类求解,避免遗漏23、(1)y12,y2;(2)x19,x22;(3)x11+,x21【分析】(1)先变形为2y(y+2)(y+2)0,然后利用因式分解法解方程;(2)先计算出判别式

27、的值,然后利用求根公式法解方程;(3)先把二次项系数化为1,再两边加上一次项系数一半的平方,配方法得到(x1)2,然后利用直接开平方法解方程【详解】解:(1)2y(y+2)(y+2)0,(y+2)(2y1)0,y+20或2y10,所以y12,y2;(2)a1,b7,c18,(7)24(18)121,x,x19,x22;(3)x22x,x22x+1+1,(x1)2,x1,x11+,x21【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了配方法和公式法24、(1)v=-4t+20;(2)小球经过2s距离

28、出发点32m;(3)当时间为5s时小球离出发点最远,最远距离为50m【分析】(1)直接运用待定系数法即可;(2)将中的用第(1)问中求得的式子来做等量代换,化简可得到S与t的关系式,令S=32时,得到关于t的方程,解出即可;(3)将S与t的关系式化成顶点式,即可求出S的最大值与相应的时间.【详解】(1)设v=kt+b,将(2,12),(3,8)代入得:,解得 所以v=-4t+20 (2)当时,当时,答:小球经过2s距离出发点32m. (3),当t=5时,v=0,m 答:当时间为5s时小球离出发点最远,最远距离为50m.【点睛】本题考查了一次函数、一元二次方程、二次函数的应用,掌握好用待定系数法

29、求函数解析式,一元二次方程的解法,二次函数的最值求法是解题的基础,注意解决实际问题,不能忘记检验.25、(1)BD与FM互相垂直,理由见解析;(2)的度数为30或75或120【分析】(1)由题意设直线BD与FM相交于点N,即可根据旋转的性质判断直线BD与线段MF垂直;(2)根据旋转的性质得MAD=,分类讨论:当KA=KD时,根据等腰三角形的性质得KAD=D=30,即=30;当DK=DA时,根据等腰三角形的性质得DKA=DAK,然后根据三角形内角和可计算出DAK=75,即=75;当AK=AD时,根据等腰三角形的性质得AKD=D=30,然后根据三角形内角和可计算出KAD=120,即=120【详解】

30、解:(1)BD与FM互相垂直,理由如下设此时直线BD与FM相交于点NDAB=90,D=30ABD=90-D=60,NBM=ABD=60由旋转的性质得ADBAMF,D=M=30MNB=180-M-NBM=180-30- 60= 90BD与FM互相垂直(2)当KA=KD时,则KAD=D=30,即=30; 当DK=DA时,则DKA=DAK,D=30,DAK=(18030)2=75,即=75; 当AK=AD时,则AKD=D=30,KAD=1803030=120,即=120, 综上所述,的度数为30或75或120【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等

31、,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形应用分类讨论思想和等腰三角形的性质是解决问题的关键26、(1)见解析;(2)【分析】(1)先计算对应一元二次方程的根的判别式的值,然后依此进行判断即可;(2)先把m看成常数,解出对应一元二次方程的解,再根据该函数的图象与轴交点的横坐标均为正数列出不等式,求出m的取值范围,再把这个范围的整数解写出即可.【详解】(1)由题意,得 =,无论m取任何实数时,该函数图象与x轴总有交点(2) , ,该函数的图象与轴交点的横坐标均为正数, ,即 m取最小整数;【点睛】本题考查了二次函数与一元二次方程的关系,把二次函数交点问题转化成一元二次方程根的问题是解题的关键.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服