ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:536.04KB ,
资源ID:1861900      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1861900.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2022年人教版七7年级下册数学期末复习卷及答案.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年人教版七7年级下册数学期末复习卷及答案.doc

1、2022年人教版七7年级下册数学期末复习卷及答案 一、选择题 1.如图,直线,b被直线c所截,下列说法正确的是( ) A.∠2与∠3是同旁内角 B.∠1与∠4是同位角 C.与是同旁内角 D.∠1与∠2是内错角 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列说法中正确的个数为( ) ①过一点有且只有一条直线与已知直线垂直; ②两条直线被第三条直

2、线所截,同位角相等; ③经过两点有一条直线,并且只有一条直线; ④在同一平面内,不重合的两条直线不是平行就是相交. A.个 B.个 C.个 D.个 5.如图,直线、相交于点,.若,则等于( ) A.70° B.110° C.90° D.120° 6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是(  ) A.①② B.①②③ C.②③ D.③ 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.

3、45° B.125° C.55° D.35° 8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(  ) A.(﹣1,0) B.(0,2) C.(﹣1,﹣2) D.(0,1) 九、填空题 9.=________. 十、填空题 10.若与关于轴对称,则______. 十一、填空题 11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=________

4、. 十二、填空题 12.如图,,点在上,点在上,则的度数等于______. 十三、填空题 13.图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处.若∠PEF=75°,2∠CFQ=∠PFC,则________. 十四、填空题 14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.如图,点A(0,1

5、点(2,0),点(3,2),点(5,1)…,按照这样的规律下去,点的坐标为 _____. 十七、解答题 17.(1)计算: (2)解方程: 十八、解答题 18.求下列各式中x的值 (1)81x2 =16 (2) 十九、解答题 19.如图所示,已知BD⊥CD于D,EF⊥CD于F,∠A=80°,∠ABC=100°.求证:∠1=∠2. 证明:∵BD⊥CD,EF⊥CD(已知) ∴∠BDC=∠EFC=90°(垂直的定义) ∴   (同位角相等,两直线平行) ∴∠2=∠3    ∵∠A=80°,∠ABC=100°(已知) ∴∠A+∠ABC=180° ∴

6、AD//BC    ∴   (两直线平行,内错角相等) ∴∠1=∠2   . 二十、解答题 20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2). (1)在平面直角坐标系中画出△ABC; (2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′; (3)求△A′B′C′的面积. 二十一、解答题 21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分. 请解答下列问题: (1)的整数部分是   ,小数部分是   . (2)如果的小数部分为a,的整

7、数部分为b,求a+b-的值; (3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关

8、系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 二十四、解答题 24.已知直线,点分别为, 上的点. (1)如图1,若,, ,求与的度数; (2)如图2,若,, ,则_________; (3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示) 二十五、解答题 25.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设. (1)如图①,当点在边上,且时,则__________,__________; (2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由; (3)当点运动到点的右侧时,其他条

9、件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可. 【详解】 解:A.∠2与∠3是同旁内角,故说法正确,符合题意; B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意; C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意; D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意; 故选:A. 【点睛】 本题主要考查了同位角

10、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动;

11、 B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.C 【分析】 根据平面直角坐标系象限的符合特点可直接进行排除选项. 【详解】 解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限; 故选C. 【点睛】 本题主要考查平面直角坐标系中象限的符合特

12、点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键. 4.B 【分析】 根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决. 【详解】 解:①平面内,过一点有且只有一条直线与已知直线垂直,故①错误; ②两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故②错误; ③经过两点有一条直线,并且只有一条直线,故③正确; ④在同一平面内,不重合的两条直线不是平行就是相交,故④正确. 故选:B. 【点睛】 本题考查垂线、平行线的性质,解答本题的关键是明确题意题意,可以判断各个选项中的说法是否正确. 5.B 【分析】

13、 先根据平行线的性质得到,然后根据平角的定义解答即可. 【详解】 解:∵, ∴, ∵, ∴. 故选:B. 【点睛】 本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键. 6.D 【分析】 分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可. 【详解】 解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误, ③平方根等于它本身的数只有0,故③正确, ④8的立方根是2,故④错误. 故选:D. 【点睛】 本题考查了立方根,平方根和算术

14、平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键. 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细

15、线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解 解析:D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解】 解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2), ∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3, ∴从A→B→C→D→A一圈的长度为2(AB+BC)=10. 2021÷10=202…1, ∴细线另一端在绕四边形第202圈的第1个单位长度的

16、位置, 即细线另一端所在位置的点的坐标是(0,1). 故选:D. 【点睛】 本题考查了坐标规律探索,找到规律是解题的关键. 九、填空题 9.6 【分析】 根据算术平方根、有理数的乘方运算即可得. 【详解】 故答案为:6. 【点睛】 本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 解析:6 【分析】 根据算术平方根、有理数的乘方运算即可得. 【详解】 故答案为:6. 【点睛】 本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 十、填空题 10.【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解

17、 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐 解析: 【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等. 十一、填空题 11.﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐

18、标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 解析:﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 十二、填空题 12.180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥ 解析:180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠E

19、FD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥CD, ∴∠1=∠AFD, ∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°, ∴∠2+360°-∠1-∠3=180°, ∴∠1+∠3-∠2=180°, 故答案为:180° 【点睛】 本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解 十三、填空题 13.或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.

20、 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+ 解析:或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+∠CFE=180° 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFQ=∠CFQ=x, ∴75°+3x=180°, ∴x=35°, ∴∠EFP=35°. ②当点Q在CD下方时,如图2 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠C

21、FQ=∠CFP, ∴∠PFC=x, ∴75°+x+x=180°, 解得x=63°, ∴∠EFP=63°. 故答案为:或 【点睛】 本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键. 十四、填空题 14.-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算, 解析:-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+

22、6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-

23、 ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(1500,501). 【分析】 仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】 观察图形可得,点(2,0),点(5,1),(8,2),…,(3n﹣1,n﹣1), 点 解析:(1500,501). 【分析】

24、 仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】 观察图形可得,点(2,0),点(5,1),(8,2),…,(3n﹣1,n﹣1), 点(3,2),(6,3),(9,4),…,(3n,n+1), ∵1000是偶数,且1000=2n, ∴n=500, ∴(1500,501), 故答案为:(1500,501). 【点睛】 本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键. 十七、解答题 17.(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)

25、去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = 解析:(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = =; (2), 去分母,可得:3(x+1)-6=2(2-3x), 去括号,可得:3x+3-6=4-6x, 移项,可得:3x+6x=4-3+6, 合并同类项,可得:9x=7, 系数化为1,可得:x=. 【点睛】 此题主要考查了实数的混合运算,解一元一

26、次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1. 十八、解答题 18.(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 解析:(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 【点睛】 本题考查了立方根,以及平方

27、根,解题的关键是熟练掌握各自的求解方法. 十九、解答题 19.BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换. 【分析】 根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据 解析:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换. 【分析】 根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据平行线的判定得出AD∥BC,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2. 【详解】 证明:∵BD⊥CD,E

28、F⊥CD(已知), ∴∠BDC=∠EFC=90°(垂直的定义), ∴BD∥EF(同位角相等,两直线平行), ∴∠2=∠3(两直线平行,同位角相等), ∵∠A=80°,∠ABC=100°(已知), ∴∠A+∠ABC=180°, ∴AD∥BC(同旁内角互补,两直线平行), ∴∠1=∠3(两直线平行,内错角相等), ∴∠1=∠2(等量代换). 故答案为:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换. 【点睛】 本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键. 二十、解答题 20.(1)见解析

29、2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′ 解析:(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′; (3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积. 【详解】 解:(1)如图,△AB

30、C为所作; (2)如图,△A′B′C′为所作; (3)△A′B′C′的面积=. 【点睛】 本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.(1)3,;(2)1;(3) 【分析】 (1)根据题意即可求解; (2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值; (3)根据题意确定出x与y的值,求出x-y的相反数即可. 【详解 解析:(1)3,;(2)1;(3) 【分析】 (1)根据题意即可

31、求解; (2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值; (3)根据题意确定出x与y的值,求出x-y的相反数即可. 【详解】 (1), 的整数部分为3,小数部分为; (2), 的整数部分为2,小数部分为, , , 的整数部分为3, , ; (3), 的整数部分为1,小数部分为, 10+=x+y,其中x是整数,且0<y<1, , 的相反数是:. 【点睛】 本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方

32、形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式.

33、 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,

34、平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法, 解析:(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理

35、1)的求法,根据,, 求解即可; (3)同理(1)的求法,根据,, 求解即可; 【详解】 解:(1)如图示,分别过点作,, ∵, ∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. (2)如图示,分别过点作,, ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. 故答案为:160; (3)同理(1)的求法 ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴, , ∴. 故答案为:. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键. 二十五、解答题 25.(1

36、60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC 解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=

37、∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°; (2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE; (3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE. 【详解】

38、 解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°. ∵在△ABC中,∠BAC=100°,∠ABC=∠ACB, ∴∠ABC=∠ACB=40°, ∴∠ADC=∠ABC+∠BAD=40°+60°=100°. ∵∠DAC=40°,∠ADE=∠AED, ∴∠ADE=∠AED=70°, ∴∠CDE=∠ADC-∠ADE=100°-70°=30°. 故答案为60,30. (2)∠BAD=2∠CDE,理由如下: 如图②,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACB=∠CDE

39、∠AED, ∴∠CDE=∠ACB-∠AED=40°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=n-100°, ∴∠BAD=2∠CDE. (3)成立,∠BAD=2∠CDE,理由如下: 如图③,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°, ∴∠ACD=140°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACD=∠CDE+∠AED, ∴∠CDE=∠ACD-∠AED=140°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=100°+n, ∴∠BAD=2∠CDE. 【点睛】 本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服