收藏 分销(赏)

2022年人教版七7年级下册数学期末复习卷及答案.doc

上传人:a199****6536 文档编号:1861900 上传时间:2024-05-10 格式:DOC 页数:24 大小:536.04KB
下载 相关 举报
2022年人教版七7年级下册数学期末复习卷及答案.doc_第1页
第1页 / 共24页
2022年人教版七7年级下册数学期末复习卷及答案.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述
2022年人教版七7年级下册数学期末复习卷及答案 一、选择题 1.如图,直线,b被直线c所截,下列说法正确的是( ) A.∠2与∠3是同旁内角 B.∠1与∠4是同位角 C.与是同旁内角 D.∠1与∠2是内错角 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列说法中正确的个数为( ) ①过一点有且只有一条直线与已知直线垂直; ②两条直线被第三条直线所截,同位角相等; ③经过两点有一条直线,并且只有一条直线; ④在同一平面内,不重合的两条直线不是平行就是相交. A.个 B.个 C.个 D.个 5.如图,直线、相交于点,.若,则等于( ) A.70° B.110° C.90° D.120° 6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是(  ) A.①② B.①②③ C.②③ D.③ 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.45° B.125° C.55° D.35° 8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(  ) A.(﹣1,0) B.(0,2) C.(﹣1,﹣2) D.(0,1) 九、填空题 9.=________. 十、填空题 10.若与关于轴对称,则______. 十一、填空题 11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________. 十二、填空题 12.如图,,点在上,点在上,则的度数等于______. 十三、填空题 13.图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处.若∠PEF=75°,2∠CFQ=∠PFC,则________. 十四、填空题 14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.如图,点A(0,1),点(2,0),点(3,2),点(5,1)…,按照这样的规律下去,点的坐标为 _____. 十七、解答题 17.(1)计算: (2)解方程: 十八、解答题 18.求下列各式中x的值 (1)81x2 =16 (2) 十九、解答题 19.如图所示,已知BD⊥CD于D,EF⊥CD于F,∠A=80°,∠ABC=100°.求证:∠1=∠2. 证明:∵BD⊥CD,EF⊥CD(已知) ∴∠BDC=∠EFC=90°(垂直的定义) ∴   (同位角相等,两直线平行) ∴∠2=∠3    ∵∠A=80°,∠ABC=100°(已知) ∴∠A+∠ABC=180° ∴AD//BC    ∴   (两直线平行,内错角相等) ∴∠1=∠2   . 二十、解答题 20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2). (1)在平面直角坐标系中画出△ABC; (2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′; (3)求△A′B′C′的面积. 二十一、解答题 21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分. 请解答下列问题: (1)的整数部分是   ,小数部分是   . (2)如果的小数部分为a,的整数部分为b,求a+b-的值; (3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 二十四、解答题 24.已知直线,点分别为, 上的点. (1)如图1,若,, ,求与的度数; (2)如图2,若,, ,则_________; (3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示) 二十五、解答题 25.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设. (1)如图①,当点在边上,且时,则__________,__________; (2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由; (3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可. 【详解】 解:A.∠2与∠3是同旁内角,故说法正确,符合题意; B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意; C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意; D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意; 故选:A. 【点睛】 本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.C 【分析】 根据平面直角坐标系象限的符合特点可直接进行排除选项. 【详解】 解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限; 故选C. 【点睛】 本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键. 4.B 【分析】 根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决. 【详解】 解:①平面内,过一点有且只有一条直线与已知直线垂直,故①错误; ②两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故②错误; ③经过两点有一条直线,并且只有一条直线,故③正确; ④在同一平面内,不重合的两条直线不是平行就是相交,故④正确. 故选:B. 【点睛】 本题考查垂线、平行线的性质,解答本题的关键是明确题意题意,可以判断各个选项中的说法是否正确. 5.B 【分析】 先根据平行线的性质得到,然后根据平角的定义解答即可. 【详解】 解:∵, ∴, ∵, ∴. 故选:B. 【点睛】 本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键. 6.D 【分析】 分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可. 【详解】 解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误, ③平方根等于它本身的数只有0,故③正确, ④8的立方根是2,故④错误. 故选:D. 【点睛】 本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键. 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解 解析:D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解】 解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2), ∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3, ∴从A→B→C→D→A一圈的长度为2(AB+BC)=10. 2021÷10=202…1, ∴细线另一端在绕四边形第202圈的第1个单位长度的位置, 即细线另一端所在位置的点的坐标是(0,1). 故选:D. 【点睛】 本题考查了坐标规律探索,找到规律是解题的关键. 九、填空题 9.6 【分析】 根据算术平方根、有理数的乘方运算即可得. 【详解】 故答案为:6. 【点睛】 本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 解析:6 【分析】 根据算术平方根、有理数的乘方运算即可得. 【详解】 故答案为:6. 【点睛】 本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 十、填空题 10.【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐 解析: 【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等. 十一、填空题 11.﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 解析:﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 十二、填空题 12.180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥ 解析:180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥CD, ∴∠1=∠AFD, ∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°, ∴∠2+360°-∠1-∠3=180°, ∴∠1+∠3-∠2=180°, 故答案为:180° 【点睛】 本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解 十三、填空题 13.或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+ 解析:或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+∠CFE=180° 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFQ=∠CFQ=x, ∴75°+3x=180°, ∴x=35°, ∴∠EFP=35°. ②当点Q在CD下方时,如图2 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFC=x, ∴75°+x+x=180°, 解得x=63°, ∴∠EFP=63°. 故答案为:或 【点睛】 本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键. 十四、填空题 14.-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算, 解析:-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(1500,501). 【分析】 仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】 观察图形可得,点(2,0),点(5,1),(8,2),…,(3n﹣1,n﹣1), 点 解析:(1500,501). 【分析】 仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可. 【详解】 观察图形可得,点(2,0),点(5,1),(8,2),…,(3n﹣1,n﹣1), 点(3,2),(6,3),(9,4),…,(3n,n+1), ∵1000是偶数,且1000=2n, ∴n=500, ∴(1500,501), 故答案为:(1500,501). 【点睛】 本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键. 十七、解答题 17.(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = 解析:(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = =; (2), 去分母,可得:3(x+1)-6=2(2-3x), 去括号,可得:3x+3-6=4-6x, 移项,可得:3x+6x=4-3+6, 合并同类项,可得:9x=7, 系数化为1,可得:x=. 【点睛】 此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1. 十八、解答题 18.(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 解析:(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 【点睛】 本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法. 十九、解答题 19.BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换. 【分析】 根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据 解析:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换. 【分析】 根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据平行线的判定得出AD∥BC,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2. 【详解】 证明:∵BD⊥CD,EF⊥CD(已知), ∴∠BDC=∠EFC=90°(垂直的定义), ∴BD∥EF(同位角相等,两直线平行), ∴∠2=∠3(两直线平行,同位角相等), ∵∠A=80°,∠ABC=100°(已知), ∴∠A+∠ABC=180°, ∴AD∥BC(同旁内角互补,两直线平行), ∴∠1=∠3(两直线平行,内错角相等), ∴∠1=∠2(等量代换). 故答案为:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换. 【点睛】 本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′ 解析:(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′; (3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积. 【详解】 解:(1)如图,△ABC为所作; (2)如图,△A′B′C′为所作; (3)△A′B′C′的面积=. 【点睛】 本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.(1)3,;(2)1;(3) 【分析】 (1)根据题意即可求解; (2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值; (3)根据题意确定出x与y的值,求出x-y的相反数即可. 【详解 解析:(1)3,;(2)1;(3) 【分析】 (1)根据题意即可求解; (2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值; (3)根据题意确定出x与y的值,求出x-y的相反数即可. 【详解】 (1), 的整数部分为3,小数部分为; (2), 的整数部分为2,小数部分为, , , 的整数部分为3, , ; (3), 的整数部分为1,小数部分为, 10+=x+y,其中x是整数,且0<y<1, , 的相反数是:. 【点睛】 本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法, 解析:(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法,根据,, 求解即可; (3)同理(1)的求法,根据,, 求解即可; 【详解】 解:(1)如图示,分别过点作,, ∵, ∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. (2)如图示,分别过点作,, ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. 故答案为:160; (3)同理(1)的求法 ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴, , ∴. 故答案为:. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键. 二十五、解答题 25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC 解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°; (2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE; (3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE. 【详解】 解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°. ∵在△ABC中,∠BAC=100°,∠ABC=∠ACB, ∴∠ABC=∠ACB=40°, ∴∠ADC=∠ABC+∠BAD=40°+60°=100°. ∵∠DAC=40°,∠ADE=∠AED, ∴∠ADE=∠AED=70°, ∴∠CDE=∠ADC-∠ADE=100°-70°=30°. 故答案为60,30. (2)∠BAD=2∠CDE,理由如下: 如图②,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACB=∠CDE+∠AED, ∴∠CDE=∠ACB-∠AED=40°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=n-100°, ∴∠BAD=2∠CDE. (3)成立,∠BAD=2∠CDE,理由如下: 如图③,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°, ∴∠ACD=140°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACD=∠CDE+∠AED, ∴∠CDE=∠ACD-∠AED=140°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=100°+n, ∴∠BAD=2∠CDE. 【点睛】 本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服