1、人教版七7年级下册数学期末质量监测题附解析一、选择题1下列图形中,与是同位角的是( )ABCD2在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )ABCD3在直角坐标系中内点在第三象限,那么点在( )A第一象限B第二象限C第三象限D第四象限4命题:对顶角相等;过一点有且只有一条直线与已知直线平行;垂直于同一条直线的两条直线平行:同旁内角互补其中错误的有( )A1个B2个C3个D4个5如图,平分,平分,则下列结论:,其中正确的是( )ABCD6有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有(
2、 )A1个B2个C3个D4个7如图,将直尺与含45角的三角尺叠放在一起,其两边与直尺相交,若125,则2的度数为()A120B135C150D1608在平面直角坐标系中,对于点P(x,y),我们把点P(y1,x1)叫做点P的友好点,已知点A1的友好点为点A2,点A2的友好点为点A3,点A3的友好点为点A4,以此类推,当点A1的坐标为(2,1)时,点A2021的坐为()A(2,1)B(0,3)C(4,1)D(2,3)九、填空题9若|y+6|+(x2)2=0,则y x=_十、填空题10已知点P(3,1)关于x轴的对称点Q的坐标是(ab,1b),则a_,b_十一、填空题11如图,在中,.三角形的外角
3、和的角平分线交于点E,则_度.十二、填空题12如图,将一块三角板的直角顶点放在直尺的一边上,当2=54时,1=_十三、填空题13图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处若PEF=75,2CFQ=PFC,则_十四、填空题14对于三个数a,b,c,用Ma,b,c表示这三个数的平均数,用mina,b,c表示这三个数中最小的数例如:M1,2,3,min1,2,31,如果M3,2x1,4x1min2,x3,5x,那么x_.十五、填空题15如图,在平面直角坐标系中,已知点,连接,交y轴于B,且,则点B坐标为_十六、填空题1
4、6育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2第n次移动到点An,则OA2A2021的面积是 _十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的的值(1); (2)十九、解答题19填充证明过程和理由如图,已知B+BCD180,BD求证:EDFE证明:B+BCD180(已知),ABCD( )B( )又BD(已知),DADBE( )EDFE( )二十、解答题20如图,在平面直角坐标系中(1)写出各顶点
5、的坐标;(2)求出的面积;(3)若把向上平移2个单位长度,再向右平移1个单位长度后得,请画出,并写出,的坐标二十一、解答题21阅读下面的对话,解答问题: 事实上:小慧的表示方法有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如: ,即 , 的整数部分为2,小数部分为 请解答:(1) 的整数部分_,小数部分可表示为_ (2)已知:10-=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是_;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?二十三
6、、解答题23如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由二十四、解答题24已知,交AC于点E,交AB于点F(1)如图1,若点D在边BC上,补全图形;求证:(2)点G是线段AC上的一点,连接FG,DG若点G是线段AE的中点,请你在图2中补全图形,判断,之间的数量关系,并证明;若点G是线段EC上的一点,请你直接写出,之间的数量关系二十五、解答题2
7、5如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由【参考答案】一、选择题1B解析:B【分析】两条线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直
8、线(截线)的同旁,则这样的一对角叫做同位角【详解】解:根据同位角的定义可知B选项中1与2在直线的同侧,并且在第三条直线(截线)的同旁,故是同位角故选:B【点睛】本题主要考查同位角的定义,准确理解同位角的定义,是解本题的关键2D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析
9、其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向3D【分析】根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答【详解】解:点M(a,b)在第三象限,a0,b0,-a0,那么点N(-a,b)所在的象限是:第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);
10、第四象限(+,-)4C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可【详解】解:对顶角相等,原命题正确; 过直线外一点有且只有一条直线与已知直线平行,原命题错误;在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;两直线平行,同旁内角互补,原命题错误故选:C【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键5B【分析】根据角平分线的性质可得,再利用平角定义可得BCF=90,进而可得正确;首先计算出ACB的度数,再利用平行线的性质可得2的度数,从而可得1的度数;利用三角形内角和计算出3的度数,然后计算出ACE的度数,可分
11、析出错误;根据3和4的度数可得正确【详解】解:如图,BC平分ACD,CF平分ACG, ACG+ACD=180,ACF+ACB=90,CBCF,故正确,CDAB,BAC=50,ACG=50,ACF=4=25,ACB=90-25=65,BCD=65,CDAB,2=BCD=65,1=2,1=65,故正确;BCD=65,ACB=65,1=2=65,3=50,ACE=15,ACE=24错误;4=25,3=50,3=24,故正确,故选:B【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系6B【分析】根据平方根与立方根的定义与性质逐个判断即可【详解】(1)是36的一个平方
12、根,则此说法正确;(2)16的平方根是,则此说法错误;(3),则此说法正确;(4),4是有理数,则此说法错误;(5)当时,无意义,则此说法错误;综上,正确的说法有2个,故选:B【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键7D【分析】如图,利用三角形的外角的性质求出3,再利用平行线的性质可得结论【详解】解:如图,4=45,1=25,4=1+3,3=45-25=20,ab,2+3=180,2=180-20=160,故选:D【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题8A【分析】根据友好点的定义及点A
13、1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数)2021=5054+1,点A2021的坐标为(2,1)故选:A【点睛】本题考查了规律型的点的坐标,从已知条件得
14、出循环规律:每4个点为一个循环是解题的关键九、填空题936【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36解析:36【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36十、填空题100 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解析:0 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a
15、+b,1-b),a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键十一、填空题11【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,
16、.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题1236【分析】如图,根据平行线的性质可得3=2,然后根据平角的定义解答即可【详解】解:如图,三角尺的两边ab,3=2=54,1=180903=36故解析:36【分析】如图,根据平行线的性质可得3=2,然后根据平角的定义解答即可【详解】解:如图,三角尺的两边ab,3=2=54,1=180903=36故答案为:36【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键十三、填空题13或【分
17、析】分两种情形:当点Q在平行线AB,CD之间时当点Q在CD下方时,分别构建方程即可解决问题【详解】解:当点Q在平行线AB,CD之间时,如图1AB/CDPEF+解析:或【分析】分两种情形:当点Q在平行线AB,CD之间时当点Q在CD下方时,分别构建方程即可解决问题【详解】解:当点Q在平行线AB,CD之间时,如图1AB/CDPEF+CFE=180设PFQ=x,由折叠可知EFP=x,2CFQ=CFP,PFQ=CFQ=x,75+3x=180,x=35,EFP=35当点Q在CD下方时,如图2设PFQ=x,由折叠可知EFP=x,2CFQ=CFP,PFC=x,75+x+x=180,解得x=63,EFP=63故
18、答案为:或【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键十四、填空题14或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1解析:或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1,M3,2x1,4x1min2,x3,5x,有如下三种情况:2x+1=2,x=,此时min2,x3,5x= min2,=2,成立;2
19、x+1=-x+3,x=,此时min2,x3,5x= min2,=2,不成立;2x+1=5x,x=,此时min2,x3,5x= min2,=,成立,x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解十五、填空题15【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,解析:【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【
20、详解】解:(1),如图,连接,设,点的坐标为,故答案是:【点睛】本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答十六、填空题16【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环解析:【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加22021450
21、51,A2021与A1是对应点,A2020与A0是对应点OA202050521010,A1A20211010A2A20211010-1=1009则OA2A2019的面积是11009,故答案为:【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得十七、解答题17(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率
22、计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18(1)或;(2)【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x2)38,开立方根得出x22,求出即可【详解】解:(1),或解析:(1)或;(2)【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x2)38,开立方根得出x22,求出即可【详解】解:(1),或;(2),【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2a(a0)或x3b的形式,再根据定义开平方或开立方,注意开平方时,
23、有两个解十九、解答题19同旁内角互补,两直线平行;DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出ABCD,根据平行线的性质得出BDCE,求出解析:同旁内角互补,两直线平行;DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出ABCD,根据平行线的性质得出BDCE,求出DCED,根据平行线的判定得出ADBE,根据平行线的性质得出即可【详解】证明:B+BCD180( 已知 ),ABCD (同旁内角互补,两直线平行),BDCE(两直线平行,同位角相等),又BD(已知 ),
24、DDCE(等量代换),ADBE(内错角相等,两直线平行),EDFE(两直线平行,内错角相等)故答案为:同旁内角互补,两直线平行;DCE;两直线平行,同位角相等;DCE;内错角相等,两直线平行;两直线平行,内错角相等【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键二十、解答题20(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长解析:(1)A(-1,-1),B(4,2),C(1
25、,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长方形面积减去三个直角三角形面积求出所求即可;(3)直接利用平移的性质进而得出对应点坐标进而得出答案【详解】解:(1)由图可知:A(-1,-1),B(4,2),C(1,3);(2)根据题意得:SABC=7;(3)如图所示:A1B1C1为所求,此时A1(0,1),B1(5,4),C1(2,5)【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键二十一、解答题21(1)3,;(2) 【分析】(1)先根据二次根式的性质求出的整数部
26、分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-解析:(1)3,;(2) 【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-y值可求【详解】解:(1), 整数部分是3, 小数部分为:-3 故答案为:3,-3(2)解: 8 10- x是整数,且0y1,x=8,y= 10-8= ,x-y=的相反数为:,xy的相反数是 【点睛】本题主要考查了估算无理数的大小,代数式求值解题的关键是确定无理数的整数部分即
27、可解决问题二十二、解答题22(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.【详解】(1)用两个面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设
28、长方形纸片的长为,宽为,解得:,答:不能剪出长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.二十三、解答题23(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=G解析:(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP
29、=65;(3)设EGC=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,
30、当点G、F在点E的右侧时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等二十四、解答题24(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DF
31、AC,可得EDF+AFD=180,解析:(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,A+AFD=180,进而得出EDF=A;(2)过G作GHAB,依据平行线的性质,即可得到AFG+EDG=FGH+DGH=DGF;过G作GHAB,依据平行线的性质,即可得到AFG-EDG=FGH-DGH=DGF【详解】解:(1)如图,DEAB,DFAC,EDF+AFD=180,A+AFD=180,EDF=A;(2)AFG+EDG=DGF如图2所示,过G作GHAB,ABDE,GHDE,AFG=FGH,ED
32、G=DGH,AFG+EDG=FGH+DGH=DGF;AFG-EDG=DGF如图所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG-EDG=FGH-DGH=DGF【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等正确的作出辅助线是解题的关键二十五、解答题25(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BA
33、O的和,由角平分线和角的和差可求出BAQ与ABQ的和,最后在ABQ中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180B
34、AQ+ABQ90,ABF+EAB36090270,又AP、BP分别是BAE和ABP的角平分线,PABEAB,PBAABF,PAB+PBA (EAB+ABF)270135,又在PAB中,P+PAB+PBA180,P18013545C的大小不变,其原因如下:AQB135,AQB+BQC180,BQC180135,又FBOOBQ+QBA+ABP+PBF180ABQQBOABO,PBAPBFABF,PBQABQ+PBA90,又PBCPBQ+CBQ180,QBC1809090又QBC+C+BQC180,C180904545【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100