1、八年级上册期末强化数学综合试卷带答案一、选择题1下列平面图形中,不是轴对称图形的是()ABCD2第五代蜂窝移动通信技术简称5C,是具有高速率、低时延和大连接特点的新代宽带移动通信技术,是实现人机物互联的网络基础设施据媒体报道,5C网络的理论下载速度为1.25GB/s,这就意味着我们下载张25M的照片只需要0.02,将0.002用科学记数法表()A210-2B210-3C0.210-2D0.210-33已知,则的值为()A24B36C72D64要使分式有意义,则x的取值范围是()ABCD5下列各式从左到右的变形是因式分解的是()ABCD6下列分式与相等的是()AB CD7如图,已知AB=DC,B
2、EAD于点E,CFAD于点F,有下列条件,选择其中一个就可以判断ABEDCF的是()B=CABCDBE=CFAF=DEA、B、C、D都可以8若关于x的分式方程的解为正数,则a的取值范围是()Aa6Ba6Ca6且a4Da6且a49将一个长为2m,宽为的长方形纸片,用剪刀沿图1中虚线剪开,把它分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个边长为的正方形,则图2中空白部分的小正方形面积是()ABCD10如图,在ABC中,P是BC上的点,作PQAC交AB于点Q,分别作PRAB,PSAC,垂足分别是R,S,若PR=PS,则下面三个结论:AS=AR;AQ=PQ;PQRCPS;ACAQ=2
3、SC,其中正确的是()ABCD二、填空题11若分式的值为0,则x的值为_12点P1()与P2()关于轴对称,则=_13已知a+b5,ab3,_14已知,则_15如图,四边形ABCD中,E、F分别是AD、AB上的动点,当的周长最小时,的度数是_16如果多项式y24ym是完全平方式,那么m的值为_17如图,在矩形中,点为中点,将沿翻折至,若,则_18如图,在中,线段,两点分别在和过点且垂直于的射线上运动,当_时,和全等三、解答题19分解因式:(1)(2)20先化简:,再取一个适当的值代入求值21如图,在ABC中,ABAC,点D在边AB上,且AC=DB,过点D作DEAC,并截取AB=DE,且点C、E
4、在AB同侧,连接BE 求证:BC=EB22探索归纳:(1)如图1,已知为直角三角形,若沿图中虚线剪去,则_(2)如图2,已知中,剪去后成四边形,则_(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想与的关系是_(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究与的关系并说明理由23请仿照例子解题:恒成立,求M、N的值解:,则,即故,解得:请你按照上面的方法解题:若恒成立,求M、N的值24(1)填空:_;(2)阅读,并解决问题:分解因式解:设,则原式这样的解题方法叫做“换元法”,即当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式,换元法是一个重要的数学方法
5、,不少问题能用换元法解决.请你用“换元法”对下列多项式进行因式分解:25如图,在等边ABC中,ABACBC6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,AMN的形状会不断发生变化当t为何值时,AMN是等边三角形;当t为何值时,AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰AMN时,求t的值26如图1,在ABC中,AEBC于E,AEBE,D是AE上一点,且DE
6、CE,连接BD,CD(1)判断与的位置关系和数量关系,并证明;(2)如图2,若将DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数【参考答案】一、选择题2A解析:A【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案【详解】解:B、C、D都是轴对称图形,A不是轴对称图形, 故选:A【点睛】本题主要考查了轴对称图形的识别,正确掌握轴对称
7、图形的定义是解题关键3B解析:B【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为a10-n(1|a| 10, n为正整数)的形式,指数n由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n就是负几【详解】解:0.002=2 10-3,故选:B【点睛】此题主要考查了用科学记数法表示绝对值小于1的数, 一般形式为a10-n(1|a| 10, n为正整数), n为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键4C解析:C【分析】根据指数幂运算法则即可求出答案【详解】,故选:C【
8、点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是熟练运用指数幂的运算法则,本题属于基础题型5B解析:B【分析】根据分式有意义的条件,可得:x-10,据此求出x的取值范围即可【详解】解:要使分式有意义,则x-10,解得:x1故选:B【点睛】此题主要考查了分式有意义的条件,解答此题的关键是要明确:分式有意义的条件是分母不等于零6B解析:B【分析】根据因式分解的定义对各选项进行逐一分析即可【详解】解:A,从左到右是单项式乘以多项式,不是因式分解,故此选项不符合题意;B,等式的右边是整式的积的形式,是因式分解,故此选项符合题意;C,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D,
9、等式的右边不是几个整式的积,含有分式,不是因式分解,故此选项不符合题意;故选B【点睛】本题考查因式分解的判断解题的关键是掌握因式分解的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解7B解析:B【分析】根据分式的基本性质进行计算即可【详解】解:,故选:B【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键8D解析:D【分析】根据BEAD于点E,CFAD于点F,可得,然后再利用全等三角形的判定定理分别进行分析即可【详解】解:BEAD于点E,CFAD于点F,选择可利用AAS定理证明;选择可得,可利用AAS定理证明;选择可利用HL定理证明;选择可得,可利用
10、HL定理证明;故选:D【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,HL注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角9C解析:C【分析】解分式方程,用a表示x,再根据关于x的分式方程的解是正数,列不等式组,解出即可【详解】解:原分式方程可化为:,去分母,得x+22x+4a,解得xa+6,关于x的分式方程的解是正数,解得:a6且a4故选:C【点睛】本题考查了分式方程的解、解一元一次不等式组,熟练掌握解分式方程、一元一次不等式组的步骤,根据关于x的分式方程的解是正数,列
11、不等式组是解题关键,注意分式有意义的条件10D解析:D【分析】根据题意可得图2中空白部分的小正方形面积等于大正方形的面积减去图1中长方形的面积,即可求解【详解】解:根据题意得:图2中空白部分的小正方形面积是 故选:D【点睛】本题主要考查了完全平方公式与几何图形,利用数形结合思想解答是解题的关键11B解析:B【分析】连接AP,由已知条件利用角平行线的判定可得1 = 2,由三角形全等的判定得APRAPS,得AS=AR,由已知可得2 = 3,得QP=AQ,答案可得.【详解】解:如图连接AP,PR=PS,PRAB,垂足为R,PSAC,垂足为S,AP是BAC的平分线,1=2,APRAPS.AS=AR,又
12、QP/AR,2 = 3又1 = 2,1=3,AQ=PQ,没有办法证明PQRCPS,不成立,没有办法证明AC-AQ=2SC,不成立.所以B选项是正确的.【点睛】本题主要考查三角形全等及三角形全等的性质.二、填空题123【分析】根据分式的值为0时分母0,且分子0两个条件求出x的值即可【详解】由x2-9=0,得x=3又x+30,x-3,因此x=3故答案为3【点睛】本题考查了分式值为0时求字母的值分式值为0时分子=0,分母0,两个条件缺一不可,掌握以上知识是解题的关键13-2【分析】根据关于y轴对称的点的特点解答即可【详解】点P1()与P2()关于轴对称,n=-2,m-4=-3m解得:n=-2,m=1
13、则mn=-2故答案为:-2【点睛】此题主要考查了关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变14【分析】将a+b=5ab=3代入原式=,计算可得【详解】当a+b=5ab=3时,原式=.故答案为【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式15【分析】先根据幂的乘方求出,再根据同底数幂的除法的逆运算法则求解即可【详解】解:,故答案为:【点睛】本题主要考查了幂的乘方,同底数幂除法的逆运算,熟知相关计算法则是解题的关键1640#40度【分析】要使CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于B
14、A和AD的对称点N,M,即可得出,最后利用CMN内角和即可得出答案【详解】作C关于解析:40#40度【分析】要使CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用CMN内角和即可得出答案【详解】作C关于BA和AD的对称点N,M,连接MN,交AD于E1,交AB于F1,则MN即为CEF的周长最小值 ,DCB=110,由对称可得:CF1=F1N,E1C=E1M,即当的周长最小时,的度数是40,故答案为:40【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质、等边对等角等知识,根据已知得出的周长
15、最小时,E,F的位置是解题关键17【分析】根据完全平方公式的形式求解即可【详解】解:多项式y24ym是完全平方式,则故答案为【点睛】此题考查了完全平方公式,解题的关键是掌握完全平方公式的形式解析:【分析】根据完全平方公式的形式求解即可【详解】解:多项式y24ym是完全平方式,则故答案为【点睛】此题考查了完全平方公式,解题的关键是掌握完全平方公式的形式18【分析】如图,延长BE交AD于点N,设BN交AM于点O由ADMBCM(SAS),推出DAM=CBM,由BME是由MBC翻折得到,推出CBM=EBM=(90-ABE),由解析:【分析】如图,延长BE交AD于点N,设BN交AM于点O由ADMBCM(
16、SAS),推出DAM=CBM,由BME是由MBC翻折得到,推出CBM=EBM=(90-ABE),由DAM=MBE,AON=BOM,推出OMB=ANB=90-ABE,在MBE中,根据EMB+EBM=90,构建关系式即可解决问题【详解】如图,延长BE交AD于点N,设BN交AM于点O四边形ABCD是矩形,D=C=ABC=ADB=90,AD=BC,DM=MC,ADMBCM(SAS),DAM=CBM,BME是由MBC翻折得到,CBM=EBM=(90ABE),DAM=MBE,AON=BOM,OMB=ANB=90ABE,在MBE中,EMB+EBM=90,AME+90ABE+(90ABE)=90,整理得:3A
17、BE2AME=90,AME=15ABE=40故答案为:40【点睛】本题考查了矩形翻折的问题,翻折变换(折叠问题)实质上就是轴对称变换折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,在解题中应用了矩形的性质定理,及全等三角形的判定和性质相关知识195或10【分析】当AP5或10时,ABC和PQA全等,根据HL定理推出即可【详解】解:C90,AOAC,CQAP90,当AP5BC时,在Rt解析:5或10【分析】当AP5或10时,ABC和PQA全等,根据HL定理推出即可【详解】解:C90,AOAC,CQAP90,当AP5BC时,在RtACB和RtQAP中,RtACBRtQAP(HL),当A
18、P10AC时,在RtACB和RtPAQ中,RtACBRtPAQ(HL),故答案为:5或10【点睛】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL三、解答题20(1)(2)【分析】(1)提取公因数,利用完全平方和公式即可求得;(2)提取公因数,利用平方差公式即可求得(1)解:;(2)解:【点睛】本题解析:(1)(2)【分析】(1)提取公因数,利用完全平方和公式即可求得;(2)提取公因数,利用平方差公式即可求得(1)解:;(2)解: 【点睛】本题主要考查利用公式以及提取公因数法因式分解,掌握因式分解的方法是解决问题的关键21,2(答案不
19、唯一)【分析】首先根据分式的加减法法则计算括号内的,再将分式的分子和分母分解因式,并约分,然后代入适合的值计算即可【详解】=要使分式有意义,不能为2解析:,2(答案不唯一)【分析】首先根据分式的加减法法则计算括号内的,再将分式的分子和分母分解因式,并约分,然后代入适合的值计算即可【详解】=要使分式有意义,不能为2,1,取,当时,原式(答案不唯一)【点睛】本题主要考查了分式的混合运算,掌握运算法则是解题的关键.注意:选择适当的x的值要保证分式有意义22见解析【分析】由DEAC,根据平行线的性质得出EDB=A,又BD=CA,DE=AB,利用SAS即可证明DEBABC,从而得到EB=BC【详解】证明
20、:DEAC,ED解析:见解析【分析】由DEAC,根据平行线的性质得出EDB=A,又BD=CA,DE=AB,利用SAS即可证明DEBABC,从而得到EB=BC【详解】证明:DEAC,EDB=A在DEB与ABC中,DEBABC(SAS),EB=BC【点睛】本题考查了全等三角形的判定与性质,平行线的性质,解答的关键是熟记全等三角形的判定定理与性质23(1)270(2)220(3)(4),理由见解析【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1解析:(1)270(2)220(3)(4),理由见解析【分析】(1)利用三角形的
21、外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;(4)根据折叠对应角相等,得到,进而求出,最后利用即可求解(1)解:如下图所示:在AEF中,由外角性质可知:1=A+EFA=90+EFA,2=A+AEF=90+AEF,1+2=(90+EFA)+( 90+AEF)=180+EFA+AEF,ABC为直角三角形,A=90,EFA+AEF=180-A=90,1+2=180+90=270(2)解:如下图所示:在AEF中,由外角性质可知:1=A+EFA,2=A+AEF,1+2=(A+EFA)+( A+AEF)=(A +EFA+AE
22、F)+A=180+40=220(3)解:由(1)、(2)中思路,由三角形外角性质可知:1=A+EFA,2=A+AEF,1+2=(A+EFA)+( A+AEF)=(A +EFA+AEF)+A=180+A,与的关系是:1+2=180+A(4)解:与的关系为:,理由如下:如图,是由折叠得到的,又,与的关系【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180”这一隐含的条件24M、N的值分别为,【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二
23、元一次方程组,进而求出M、N的值【详解】解:,即故,解得解析:M、N的值分别为,【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值【详解】解:,即故,解得答:M、N的值分别为,【点睛】此题考查了分式混合运算,解题的关键是读懂例题的解法并熟练运用分式运算法则25(1)9,3;(2),【分析】(1)根据完全平方公式可得到结论;(2)根据换元法设,根据完全平方公式可得结论;先将原式x24x看作整体,根据换元法设x24x=a,化简,再根据解析:(1)9,3;(2),【分析】(1)根据完全平方公式可得到结论;(2)根据换元法设,
24、根据完全平方公式可得结论;先将原式x24x看作整体,根据换元法设x24x=a,化简,再根据完全平方公式可得结论【详解】解:(1)a2+6a+9=(a+3)2,故答案为9,3;(2),设,则原式;,设,.【点睛】本题考查了运用公式法和换元法分解因式,掌握数学中的换元思想,正确应用公式是解题关键26(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的解析:(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(
25、1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形AMN,然后表示出AM,AN的长,由于A等于60,所以只要AMAN三角形ANM就是等边三角形;分别就AMN90和ANM90列方程求解可得;(3)首先假设AMN是等腰三角形,可证出ACMABN,可得CMBN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x1+62x,解得:x6,即当M、N运动6秒时,点N追上点M;(2)设点M、N运动t秒后,可得
26、到等边三角形AMN,如图1,AMt,AN62t,ABACBC6cm,A60,当AMAN时,AMN是等边三角形,t62t,解得t2,点M、N运动2秒后,可得到等边三角形AMN当点N在AB上运动时,如图2,若AMN90,BN2t,AMt,AN62t,A60,2AMAN,即2t62t,解得;如图3,若ANM90,由2ANAM得2(62t)t,解得综上所述,当t为或时,AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设AMN是等腰三角形,ANAM,AMNANM,AMCANB,ABBCAC,ACB是等边三角形,
27、CB,在ACM和ABN中,AMCANB,CB,ACAB,ACMABN(AAS),CMBN,t6182t,解得t8,符合题意所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键27(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关解析:(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关系是:,数量关系是理由如下:如图1,延长交于点于,AEBC,(2)与的位置关系是:,数量关系是如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,即,AEBC,又,(3)如图,线段AC与线段BD交于点F,和是等边三角形,在和中,与的夹角度数为【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100