ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:592.04KB ,
资源ID:1739453      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1739453.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2022年人教版七7年级下册数学期末质量检测题附解析.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年人教版七7年级下册数学期末质量检测题附解析.doc

1、2022年人教版七7年级下册数学期末质量检测题附解析 一、选择题 1.如图所示,下列四个选项中不正确的是( ) A.与是同旁内角 B.与是内错角 C.与是对顶角 D.与是邻补角 2.下列运动属于平移的是( ) A.汽车在平直的马路上行驶 B.吹肥皂泡时小气泡变成大气泡 C.铅球被抛出 D.红旗随风飘扬 3.在平面直角坐标系中,点(-1,-3)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.在以下三个命题中,正确的命题有( ) ①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交 ②a,b,c是三条不同

2、的直线,若a∥b,b∥c,则a∥c ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补 A.② B.①② C.②③ D.①②③ 5.直线,,,,则( ) A.15° B.25° C.35 D.20° 6.下列运算中:①;②;③;④,错误的个数有( ) A.1个 B.2个 C.3个 D.4个 7.如图,直线,E为上一点,G为上一点,,垂足为F,若,则的度数为( ) A. B. C. D. 8.如图,动点在平面直角坐标系中,按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,……,按这样的运动规律,

3、经过第2021次运动后,动点的坐标是( ) A. B. C. D. 九、填空题 9.若,则______. 十、填空题 10.若与关于轴对称,则______. 十一、填空题 11.如图,已知AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,∠BCE=40°,则∠ADB=_____. 十二、填空题 12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________. 十三、填空题 13.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____. 十四、填空题 14.对于正数x规定,例如:,

4、则f (2020)+f (2019)+……+f (2)+f (1)+=___________ 十五、填空题 15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____. 十六、填空题 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________. 十七、解答题 17.计

5、算: (1) (2) 十八、解答题 18.求下列各式中x的值: (1)(x+1)3﹣27=0 (2)(2x﹣1)2﹣25=0 十九、解答题 19.完成下面的证明:如图,点、、分别是三角形的边、、上的点,连接,,,,连接交于点,求证:. 证明: ∵(已知) ∴(_______________) 又∵(已知) ∴(______________) ∴(_____________) ∴(______________) 二十、解答题 20.如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上

6、平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为. (1)在图中画出平移后的三角形; (2)写出点的坐标; (3)三角形ABC的面积为 . 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分. 又例如,因为,即,所以的整数部分为2,小数部分为.请解答: (1)的整数部分为 ;小

7、数部分为 ; (2)如果的整数部分为a,的小数部分为b,求的值. 二十二、解答题 22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 二十三、解答题 23.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN. (1)如图1,延长HN至G,∠BMH和∠G

8、ND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°; (2)如图2,∠BMH和∠HND的角平分线相交于点E. ①请直接写出∠MEN与∠MHN的数量关系:   ; ②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论) 二十四、解答题 24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变

9、化规律. (3)当点P运动到使时,求的度数. 二十五、解答题 25.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且B

10、O=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据同旁内角,内错角,对顶角,邻补角的定义逐项分析. 【详解】 A. 与是同旁内角,故该选项正确,不符合题意; B. 与不是内错角,故该选项不正确,符合题意; C. 与是对顶角,故该选项正确,不符合题意; D. 与是邻补角,故该选项正确,不符合题意; 故选B. 【点睛】 本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在

11、第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角. 2.A 【分析】 根据平移的定义,对选项进行一一分析,排除错误答案. 【详解】 解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合; B、吹肥皂泡时小气泡变成大气泡,不属于平移 解析:A 【分析】 根据平移的定义,对选项进行

12、一一分析,排除错误答案. 【详解】 解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合; B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合; C、铅球被抛出是旋转与平移组合,故C选项不符合; D、随风摆动的红旗,不属于平移,故D选项不符合. 故选:A. 【点睛】 此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.C 【分析】 根据平面直角坐标系中象限内点的特征判断即可; 【详解】 ∵,, ∴点(-1,-3)位于第三象限; 故选C. 【点睛】 本题主要考查了平面直角坐标

13、系中象限内点的特征,准确分析判断是解题的关键. 4.A 【分析】 根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可. 【详解】 解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误; ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确; ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误 综上:正确的命题是②. 故选A. 【点睛】 此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键. 5.A 【分析

14、 分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成. 【详解】 分别过A、B作直线∥AD、∥BC,如图所示,则AD∥BC ∵∥ ∴∥BC ∴∠CBF=∠2 ∵∥AD ∴∠EAD=∠1=15゜ ∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜ ∵AD∥BC ∴∠DAB+∠ABC=180゜ ∴∠ABC=180゜-∠DAB=180゜-110゜=70゜ ∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜ ∴∠2=15゜ 故选:A. 【点睛】 本题考查了平行线的性质与判定等知识,关键是作两条平行线. 6.D 【分析】 对每

15、个选项依次计算判断即可. 【详解】 ①,故该项错误; ②无意义,故该项错误; ③,故该项错误; ④,故该项错误. 共4个错误的, 故选:D. 【点睛】 此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简. 7.C 【分析】 根据内角和定理可知的度数,再根据平行线的性质即可求得的度数. 【详解】 ∵ ∴ ∵ ∴ ∵ ∴. 故选:C 【点睛】 本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键. 8.D 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2

16、0,1,0…,每4次一轮这一规律,进而求出即可. 【详解】 解:由图可知:横坐标1,2,3,4…依 解析:D 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可. 【详解】 解:由图可知:横坐标1,2,3,4…依次递增,则第2021个点的横坐标为2021; 纵坐标2,0,1,0,2,0,1,0…4个一循环,2021÷4=505…1, ∴经过第2021次运动后,P(2021,2). 故选D. 【点睛】 此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规

17、律进行解题是解答本题的关键. 九、填空题 9.1 【分析】 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解. 【详解】 解:根据题意得,a-3=0,b+2=0, 解得a=3,b= -2, 所以3+(-2)=1. 故答案为1. 解析:1 【分析】 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解. 【详解】 解:根据题意得,a-3=0,b+2=0, 解得a=3,b= -2, 所以3+(-2)=1. 故答案为1. 【点睛】 本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解

18、题的关键. 十、填空题 10.【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐 解析: 【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等. 十一、填空题 11.100°

19、 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB 解析:100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数. 【详解】 解:∵AD是ABC的角平分线,∠BAC=60°. ∴∠BAD=∠CAD=∠BAC=30°, ∵CE是ABC的高,

20、∴∠CEA=90°. ∵∠CEA+∠BAC+∠ACE=180°. ∴∠ACE=30°. ∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°. ∴∠ADB=40°+30°+30°=100°. 故答案为:100°. 【点睛】 本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案. 十二、填空题 12.110° 【分析】 如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5. 【详解】 如图,∵a∥b, ∴∠4=∠1=68°, ∴

21、∠5=∠4=68 解析:110° 【分析】 如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5. 【详解】 如图,∵a∥b, ∴∠4=∠1=68°, ∴∠5=∠4=68°, ∵∠2=42°, ∴∠5+∠2=68°+42°=110°, ∵a∥b, ∴∠3=∠2+∠5, ∴∠3=110°, 故答案为:110°. 【点睛】 本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键. 十三、填空题 13.30° 【分析】 由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,

22、从而可以求得∠AMD的度数,本题得以解决. 【详解】 解:∵四边形ABCD是矩形, ∴DN∥AM, ∵∠DNM=75º 解析:30° 【分析】 由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决. 【详解】 解:∵四边形ABCD是矩形, ∴DN∥AM, ∵∠DNM=75º, ∴∠DNM=∠BMN=75º, ∵将矩形ABCD沿MN折叠,使点B与点D重合, ∴∠BMN=∠NMD=75º, ∴∠BMD=150º, ∴∠AMD=30º, 故答案为:30º. 【点睛】 本题考查了矩形的性质、平行线的性质、折叠的性质

23、属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键. 十四、填空题 14.5 【分析】 由已知可求,则可求. 【详解】 解:, , , , 故答案为:2019.5 【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键. 解析:5 【分析】 由已知可求,则可求. 【详解】 解:, , , , 故答案为:2019.5 【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键. 十五、填空题 15.(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与

24、负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0), 解析:(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0),B(2,0), ∴AB=2-1=1, ∴△ABC的面积=×1•h=2, 解得h=4, 点C在y轴正半轴时,点C为(0,4), 点C在y轴负半轴时,点C为(0,-4), 所以,点C的坐标为(0,4)或(0,-4). 故答案为:(0,4)或(0,-4). 【点睛】 本题考查了三角

25、形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键. 十六、填空题 16.【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环 解析: 【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2 ∵2021÷4=505…1, ∴A2021与A1是对应点,A2

26、020与A0是对应点 ∴OA2020=505×2=1010,A1A2021=1010 ∴A2A2021=1010-1=1009 则△OA2A2019的面积是×1×1009=, 故答案为:. 【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 十七、解答题 17.(1);(2)-5. 【分析】 (1)直接利用算术平方根以及立方根的定义化简得出答案; (2)直接利用算术平方根以及立方根的定义化简得出答案. 【详解】 (1) =1+-2 = (2) =3-4+ 解析:(1);(2)-5. 【分析

27、 (1)直接利用算术平方根以及立方根的定义化简得出答案; (2)直接利用算术平方根以及立方根的定义化简得出答案. 【详解】 (1) =1+-2 = (2) =3-4+1-5 =-5 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题 18.(1)x=2;(2)x=3或x=-2. 【分析】 (1)根据立方根的定义进行求解即可; (2)根据平方根的定义进行求解,即可得出答案. 【详解】 解:(1)(x+1)3-27=0, (x+1)3=2 解析:(1)x=2;(2)x=3或x=-2. 【分析】 (1)根据立方根的定义进行求解即可

28、 (2)根据平方根的定义进行求解,即可得出答案. 【详解】 解:(1)(x+1)3-27=0, (x+1)3=27, x+1=3, x=2; (2)(2x-1)2-25=0, (2x-1)2=25, 2x-1=±5, x=3或x=-2. 【点睛】 本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键. 十九、解答题 19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补 【分析】 根据平行线的性质与判定进行证明即可得到答案. 【详解】 证明:∵(已知) ∴(两直线平行,同位角相等) 解析:两直线平行,同位

29、角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补 【分析】 根据平行线的性质与判定进行证明即可得到答案. 【详解】 证明:∵(已知) ∴(两直线平行,同位角相等) 又∵(已知) ∴(等量代换) ∴(同位角相等,两直线平行) ∴.(两直线平行,同旁内角互补) 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的

30、面积减去三个直角形的面 解析:(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可. 【详解】 (1)如图所示,三角形即为所求; (2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1); (3)三角形ABC的面积为:4×5-×2×4-×1×3-×3×5=7. 【点睛】 本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解

31、题的关键. 二十一、解答题 21.(1)9,;(2)15 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵,即 ∴的整数部分为9,小数部分为 (2)∵,即 ∴的整数部 解析:(1)9,;(2)15 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵,即 ∴的整数部分为9,小数部分为 (2)∵,即 ∴的整数部分为5,小数部分为 ∴, 【点睛】 此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键. 二十

32、二、解答题 22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来

33、正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 二十三、解答题 23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角

34、与角之间的基本运算、等量代换等即 解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证. (2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°. ②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=

35、140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数. 【详解】 解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1 ∵EP∥AB且ME平分∠BMH, ∴∠MEQ=∠BME=∠BMH. ∵EP∥AB,AB∥CD, ∴EP∥CD,又NE平分∠GND, ∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等) ∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND). ∴2∠MEN=∠BMH+∠G

36、ND. ∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH. ∴∠DHN=∠BMH﹣∠MHN. ∴∠GND+∠BMH﹣∠MHN=180°, 即2∠MEN﹣∠MHN=180°. (2)①:过点H作GI∥AB.如答图2 由(1)可得∠MEN=(∠BMH+∠HND), 由图可知∠MHN=∠MHI+∠NHI, ∵GI∥AB, ∴∠AMH=∠MHI=180°﹣∠BMH, ∵GI∥AB,AB∥CD, ∴GI∥CD. ∴∠HNC=∠NHI=180°﹣∠HND. ∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).

37、 又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN, ∴∠BMH+∠HND=360°﹣∠MHN. 即2∠MEN+∠MHN=360°. 故答案为:2∠MEN+∠MHN=360°. ②:由①的结论得2∠MEN+∠MHN=360°, ∵∠H=∠MHN=140°, ∴2∠MEN=360°﹣140°=220°. ∴∠MEN=110°. 过点H作HT∥MP.如答图2 ∵MP∥NQ, ∴HT∥NQ. ∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补). ∵MP平分∠AMH, ∴∠PMH=∠AMH=(180°﹣∠BMH). ∵∠NHT=∠MHN﹣∠MHT=14

38、0°﹣∠PMH. ∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°. ∵∠ENH=∠HND. ∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°. ∴∠ENQ+(HND+∠BMH)=130°. ∴∠ENQ+∠MEN=130°. ∴∠ENQ=130°﹣110°=20°. 【点睛】 本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 二十四、解答题 24.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性

39、质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又

40、∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 二十五、解答题 25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1) 解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(

41、1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论; (2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论. 试题解析:解:解决问题 连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6. 拓展延伸: 解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2. (2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服