ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:736.04KB ,
资源ID:1724057      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1724057.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(人教版初二上册压轴题强化数学质量检测试卷解析(一).doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版初二上册压轴题强化数学质量检测试卷解析(一).doc

1、人教版初二上册压轴题强化数学质量检测试卷解析(一) 2.已知△ABC是等边三角形,△ADE的顶点D在边BC上 (1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数; (2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF; (3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由. 2.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点. (1)求点的坐标; (2)求证:; (3)如图2,点在

2、线段上,作轴于点,交于点,若,求证:. 3.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP. (1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系; (2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想; (3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ

3、与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由. 4.如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C. (1)证明:△ABE为等边三角形; (2)若CD⊥AB于点F,求线段CD的长; (3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD

4、于点N.问两动点运动多长时间时△OPM与△OQN全等? 5.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E. (1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标; (2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE; (3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是

5、否变化?若变化请说明理由,若不变化,请求出BP的长度. 6.已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点. (1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,,求C点的坐标; (2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰.当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出; (3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,,请直接写出线段AM的长. 7.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b

6、c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 8.在Rt△中,,∠,点是上一点. (1)如图,平分∠,求证; (2)如图,点在线段上,且∠,∠,

7、求证; (3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果). 【参考答案】 2.(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CF 解析:(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三

8、角形中30度角所对直角边等于斜边的一半,即可得证; (3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案. 【详解】解:(1)根据题意, ∵AD=DE,∠AED=60°, ∴△ADE是等边三角形, ∴AD=AE,∠DAE=60°, ∵AB=AC,∠BAC=60°, ∴, 即, ∴△BAD≌△CAE, ∴∠ACE=∠B=60°; (2)连CF,如图: ∵AB=AC=AE, ∴∠AEB=∠ABE, ∵∠BAC=60°,∠EAC=90°, ∴∠BAE=150°, ∴∠AEB=∠ABE=

9、15°; ∵△ACE是等腰直角三角形, ∴∠AEC=45°, ∴∠BEC=30°,∠EBC=45°, ∵AD垂直平分BC,点F在AD上, ∴CF=BF, ∴∠FCB=∠EBC=45°, ∴∠CFE=90°, 在直角△CEF中,∠CFE=90°,∠CEF=30°, ∴CE=2CF=2BF; (3)延长AE至F,使EF=AE,连DF、CF,如图: ∵∠AED=90°,EF=AE, ∴DE是中线,也是高, ∴△ADF是等腰三角形, ∵∠ADE=30°, ∴∠DAE=60°, ∴△ADF是等边三角形; 由(1)同理可求∠ACF=∠ABC=60°, ∴∠ACF=∠

10、BAC=60°, ∴CF∥AB, 过E作EG⊥CF于G,延长GE交BA的延长线于点H, 易证△EGF≌△EHA, ∴EH=EG=HG, ∵HG是两平行线之间的距离,是定值, ∴S△ABE=S△ABC=; 【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题. 3.(1);(2)证明见解析;(3)证明见解析. 【分析】(1)由非负性可求a,b的值,即可求解; (2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠C

11、BQ,可证△ABC是等腰直 解析:(1);(2)证明见解析;(3)证明见解析. 【分析】(1)由非负性可求a,b的值,即可求解; (2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论; (3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论. 【详解】解:(1)∵a2-2ab+2b2-16b+64=0, ∴(a-b)2+(b-8)2=0, ∴a=

12、b=8, ∴b-6=2, ∴点C(2,-8); (2)∵a=b=8, ∴点A(0,6),点B(8,0),点C(2,-8), ∴AO=6,OB=8, 如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q, ∴四边形AOBP是矩形, ∴AO=BP=6,AP=OB=8, ∵点B(8,0),点C(2-8), ∴CQ=6,BQ=8, ∴AP=BQ,CQ=BP, 又∠APB=∠BCQ ∴△ABP≌△BCQ(SAS), ∴AB=BC,∠BAP=∠CBQ, ∵∠BAP+∠ABP=90°, ∴∠ABP+∠CBQ=90°, ∴∠ABC

13、90°, ∴△ABC是等腰直角三角形, ∴∠BAC=45°, ∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°, ∴∠OAC+∠ABO=45°; (3)如图2,过点A作AT⊥AB,交x轴于T,连接ED, ∴∠TAE=90°=∠AGE, ∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG, ∴∠ATO=∠GAE,∠TAO=∠AEG, 又∵EG=AO, ∴△ATO≌△EAG(AAS), ∴AT=AE,OT=AG, ∵∠BAC=45°, ∴∠TAD=∠EAD=45°, 又∵AD=AD, ∴△TAD≌△EAD(SAS), ∴TD=ED,

14、∠TDA=∠EDA, ∵EG⊥AG, ∴EG∥OB, ∴∠EFD=∠TDA, ∴∠EFD=∠EDF, ∴EF=ED, ∴EF=ED=TD=OT+OD=AG+OD, ∴EF=AG+OD. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键. 4.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2 解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.

15、 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可; (3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样. 【详解】(1)AB=AP且AB⊥AP, 证明:∵AC⊥BC且AC=BC, ∴△ABC为等腰直角三角形, ∴∠BAC=∠ABC=, 又∵△ABC与△EFP全等, 同理可证∠PEF=45°, ∴

16、∠BAP=45°+45°=90°, ∴AB=AP且AB⊥AP; (2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ, 证明:延长BQ交AP于G, 由(1)知,∠EPF=45°,∠ACP=90°, ∴∠PQC=45°=∠QPC, ∴CQ=CP, ∵∠ACB=∠ACP=90°,AC=BC, ∴在△BCQ和△ACP中 ∴△BCQ≌△ACP(SAS), ∴AP=BQ,∠CBQ=∠PAC, ∵∠ACB=90°, ∴∠CBQ+∠BQC=90°, ∵∠CQB=∠AQG, ∴∠AQG+∠PAC=90°, ∴∠AGQ=180°-90°=90°, ∴AP⊥BQ

17、 (3)成立. 证明:如图,∵∠EPF=45°, ∴∠CPQ=45°. ∵AC⊥BC, ∴∠CQP=∠CPQ, CQ=CP. 在Rt△BCQ和Rt△ACP中, ∴Rt△BCQ≌Rt△ACP(SAS) ∴BQ=AP; 延长BQ交AP于点N, ∴∠PBN=∠CBQ. ∵Rt△BCQ≌Rt△ACP, ∴∠BQC=∠APC. 在Rt△BCQ中,∠BQC+∠CBQ=90°, ∴∠APC+∠PBN=90°. ∴∠PNB=90°. ∴BQ⊥AP. 【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的

18、对应边相等.也考查了等腰直角三角形的判定与性质. 5.(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论; (2)由(1)知∠ABE 解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论; (2)由(1)知∠ABE=∠BEA=∠EAB=60°,进而得出∠AOF=30°,利用含30°角的直角三角形的性质得到AF、OF的长.再证明∠ACF=∠AOF=30

19、°,∠D=30°,同理得出CF、DF的长,进而可得出结论. (3)设运动的时间为t秒.然后分四种情况讨论:①当点P、Q分别在y轴、x轴上时,;②当点P、Q都在y轴上时,;③当点P在x轴上,Q在y轴且二者都没有提前停止时,;④当点P在x轴上,Q在y轴且点Q提前停止时,,列方程求解即可. 【详解】(1)在△AOB与△EOB中,∵∠AOB=∠EOB,OB=OB,∠EBO=∠ABO,∴△AOB≌△EOB (ASA),∴AO=EO=3,BE=AB=6,∴AE=BE=AB=6,∴△ABE为等边三角形. (2)由(1)知∠ABE=∠BEA=∠EAB=60°. ∵CD⊥AB,∴∠AOF=30°,∴AF

20、. 在Rt△AOF中,OF=. ∵∠CAH=∠BAO =60°,∴∠CAF =60°,∠ACF=∠AOF=30°,∴AO=AC. 又∵CD⊥AB,∴CF=. ∵AB=6,AF=,∴BF=. 在Rt△BDF中,∠DBF =60°,∠D=30°,∴BD=. 由勾股定理得:∴DF=,∴CD=. (3)设运动的时间为t秒. ①当点P、Q分别在y轴、x轴上时,,PO=QO得:,解得:(秒); ②当点P、Q都在y轴上时,,PO=QO得:,解得(秒); ③当点P在x轴上,Q在y轴且二者都没有提前停止时,,则PO=QO,得:,解得:,不合题意,舍去. ④当点P在x轴上,Q在y轴且点Q提

21、前停止时,有,解得:(秒). 综上所述:当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【点睛】本题考查了全等三角形的判定、含30°角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质.正确分类讨论是解题的关键. 6.(1)A(0,1); (2)见解析; (3)不变,BP= 2. 【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易 解析:(1)A(0,1); (2)见解析; (3)不变,BP= 2. 【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△

22、ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标; (2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论; (3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:△CBE≌△BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPE≌△DPB,故BP=EP=2. (1)如图(1),过点C

23、作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1); (2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在

24、△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE; (3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2. 【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作

25、出辅助线,构建全等三角形. 7.(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; 解析:(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; (3)在上截取,连接,证明,由全等三角形的性质得出.由等腰三角形的性质可得出结论. (1) 解:如图1,过点作于点, , 等腰直角三角形, ,,

26、 . , ,. ,, ,, , ; (2) 解:整式的值不会变化. 理由如下: 如图2,过点作于点, , 等腰直角三角形, ,, , , , , , , , 当点沿轴负半轴向下运动时, , 整式的值不变,为; (3) . 证明:如图3,在上截取,连接, 是等边三角形, ,, 为等腰直角三角形, ,, , , , ,, , , . , ,, , , , , , , 即. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线

27、并证明三角形全等是解决问题的关键. 8.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设   ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设   ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.

28、1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键. 9.(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△AD

29、H即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A 解析:(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题. (3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题. (1) 证明:如图1中,作DH⊥AB于H. ∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH, ∴△ADC≌△ADH

30、ASA), ∴AC=AH,DC=DH, ∵CA=CB,∠C=90°, ∴∠B=45°, ∵∠DHB=90°, ∴∠HDB=∠B=45°, ∴HD=HB, ∴BH=CD, ∴AB=AH+BH=AC+CD. (2) 如图2中,作CM⊥CE交AD的延长线于M,连接BM. , , , , , ∵∠ACB=∠ECM=90°, , , ∵CA=CB,CE=CM, ∴△ACE≌△BCM(SAS), ∴AE=BM, ∵在Rt△EMB中,∠MEB=30°, ∴BE=2BM=2AE. (3) 解:如图3中,作CH⊥MN于H. , , , , , , , ,, , , , , 是的中线, , ,, , , , . 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服