ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:185KB ,
资源ID:1521491      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1521491.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数学方法论必做作业.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数学方法论必做作业.doc

1、精品文档数学方法论第二章作业姓名: 学号:设x1,x2,xn1,1,且x1x2+x2x3+xn-1xn+xnx1=0,求证:n是4的倍数。证明:x1x2+x2x3+xn-1xn+xnx1=0 由于x1,x2,xn1,1,根据正负抵消规律,n必为偶数。设n=2k,kN+,方程可变形为:x1x2+x2x3+xn-1xn+xnx1=(1+1+1)(k个)+(-1-1-1)(k个)=0 (x1x2)(x2x3)(xn-1xn)(xnx1)=1k(-1)k=(x1x2xn)2=1从而k必为偶数,设k=2m,mN+,易得n=4m,m属于N+得证n是4的倍数。数学方法论第五章作业姓名: 学号:5.何谓计算证

2、明法,有哪些具体的计算证明方法,它们又各是如何进行应用的,并应注意什么问题?答:把证明问题转化为计算的方法叫做计算证题法,该方法一般思路单纯(即使算式紧杂但难度降低),较易著手,且能对免添加过多的辅助线。1、 代数法代数法一一用代数知识来研究或证明几何问题的方法,该方法常用于涉及度关系的几何问题,主要用代数上的恒等变形方程知识。教材上对于该方法的两个例题中,例5.1较简单。2、 三角法三角法一用三角加识来研究或证明几何或代数间题的方法,该方法主要用三角函数、三角换元法、三角恒等变换,解三角方程、证明三角不等式等方面的知识。3、 坐标法坐标法一一通过建立坐标系,用解析几何的知识证明几何问题的方法

3、。此法使用时注意选取坐标轴和原点尽量为已知元素(减少辅助线),尽量减少参数(可取单位1),以便点坐标或曲线方程表达简单、运算方便。4、 复数法复数法一一用复数知识解答其他数学问题的方法。5、 向量法向量法一一将几何问题转化为向量计算问题的方法,该方法对于几何中的平行、垂直、线共点、点共线等问题往往更有效。数学方法论期末考核作业学号: 姓名:题目:构造相关例题对自选的3种数学方法的应用予以说明。对几种数学方法的简单探究在数学的学习和研究中,我们往往有一些特殊的、通用的研究手段和解题方法,我们称之为数学思想方法。数学思想方法是一种重要的数学观念,是解题思维的导航器。我参加工作已经两年半了,在日常教

4、学中,也经常会给学生渗透数学这门学科独特的思想方法。接下来,就最常用的几种数学思想方法进行简单探究。一、数形结合思想数学是研究客观世界的空间形式和数量关系的科学,数是形的抽象概括,形是数的直观表现。数形结合思想就是充分利用数的严谨和形的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象思维和形象思维结合,通过图形的描述、代数的论证来研究和解决数学问题的一种数学思想方法。数形结合在解决中学数学问题中占有极其重要的地位,在历年的高考中也十分注重对数形结合思想的考查。数形结合主要体现在两个方面:一是以形助数,即借助形的直观性来阐明数之间的联系。常用的有:借助数轴;借助函数图象;借助单位圆;借助数

5、式的结构特征;借助解析几何。二是以数助形,即借助数的精确性来阐明形的某些属性。常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化需要转化的意识,因此,数形结合的思想往往偏重于由“数”到“形”的转化。例题1. 解不等式.解:这是一个含绝对值的不等式,求解的时候需要去掉绝对值符号,但是,去掉绝对值符号时往往需要复杂的讨论,略显繁琐。我们可以将本题理解为“求数轴上到1和3两点距离之和大于或等于3的点的集合”。这样,就可以将不等式用数轴形象直观的表示出来,便于理解和计算。易得此不等式的解集为。例题2. 若集合,集合且

6、,则的取值范围是什么?解:若点满足集合,则赋予几何意义后可知,点在半圆上移动,问题转化为:直线与半圆有公共点。以为半径的圆在轴上方的部分,如图,而集合则表示一条直线,其斜率,纵截距为,由图形可知,欲使,即直线与半圆有公共点,的最小逼近值为,最大值为,即。本题利用几何知识解决代数问题,是数形结合思想的一个重要方面。二、划归与转化思想数学中的转化比比皆是,如未知向量已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向量平面的转化,高维向低维的转化,多元向一元的转化,高次向低次转化,函数与方程的转化等,都是转化思想的体现。例题. 设不等式对满足的一切实数都成立

7、,求实数的取值范围。解:令,则愿不等式等价于,恒成立。由于是关于的一次函数或常数函数,故有,解得,从而实数的取值范围是。本题通过变更主元转化为关于的一次函数。有些含参变量的方程或不等式,参变量不易分离,或者分离出来以后求解比较困难,这时我们可以重新审视问题,将主元与参变量进行换位思考,从而简化问题的解法。营销环境信息收集索引三、分类讨论思想在解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一的方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在若干个子区域内进行解题,这里集中体现的是由大化小,由整体化为部分

8、,由一般划为特殊的解决问题的方法,像这样的“合分合”的解决问题的过程,就是分类讨论的思想方法。300元以下918%分类讨论是一个难点,主要考察学生的逻辑思维能力,其体现在许多知识点里,如:求解函数,求解数列,解不等式,解方程,排列组合等。在上海, 随着轨道交通的发展,地铁商铺应运而生,并且在重要商圈已经形成一定的气候,投资经营地铁商铺逐渐为一大热门。在人民广场地下的迪美购物中心,有一家DIY自制饰品店-“碧芝自制饰品店”例题1. 设,函数,试讨论函数的单调性。(一)大学生的消费购买能力分析解:因为在大学生对DIY手工艺品价位调查中,发现有46% 的女生认为在十元以下的价位是可以接受;48% 的

9、认为在10-15元;6% 的则认为50-100元能接受。如图1-2所示所以.(2)物品的独一无二对于,当时,函数在上是增函数;当时,函数在上是减函数,在上是增函数。对于,当时,函数在上是减函数;当时,函数在上是减函数,在上是增函数。在上海, 随着轨道交通的发展,地铁商铺应运而生,并且在重要商圈已经形成一定的气候,投资经营地铁商铺逐渐为一大热门。在人民广场地下的迪美购物中心,有一家DIY自制饰品店-“碧芝自制饰品店”例题2. 数列的前项和,又,求的前项和。解:当时,;目前,上海市创业培训中心已开办大学生创业培训班,共招收上海交通大学、上海商业职业技术学院等应届毕业生人。当时,.所以.关于DIY手工艺制品的消费调查故当时,;当时,.据统计,上海国民经济持续快速增长。03全年就实现国内生产总值(GDP)6250.81亿元,按可比价格计算,比上年增长11.8%。第三产业的增速受非典影响而有所减缓,全年实现增加值3027.11亿元,增长8%,增幅比上年下降2个百分点。数学思想方法很多,本文中提到的数形结合思想、划归与转化思想、分类讨论思想是中学阶段最常见的、最基础的几种思想方法,这些思想方法渗透到了各个知识点和题型中。对于教师来说,要主动地通过概念以及例题来引导学生体会这些数学思想方法,并辅助以适当的练习,最终形成自己的数学思维。精品文档

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服