ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:963KB ,
资源ID:1455322      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1455322.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(全等三角形的判定(SAS).ppt)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全等三角形的判定(SAS).ppt

1、12.2三角形全等的判定第十二章 全等三角形导入新课讲授新课当堂练习课堂小结 第第2 2课时课时 “边边角角边边”情境引入学习目标1探索并正确理解三角形全等的判定方法“SAS”.(重点)2会用“SAS”判定方法证明两个三角形全等及进行简单的应用(重点)3.了解“SSA”不能作为两个三角形全等的条件(难点)小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,请你帮助小伟想一个办法,并说明你的理由 尺规作图画出一个ABC,使ABAB,ACAC,AA(即使两边和它们的夹角对应相等).把画好的ABC剪下,放到ABC上,它们全等吗?ABC探究活探究活动1:SAS能否判定能否判定的两个三

2、的两个三角形全等角形全等ABCA DEB C 作法:(1)画DAE=A;(2)在射线AD上截取AB=AB,在射线AE上截取AC=AC;(3)连接BC.在ABC 和 DEF中,ABC DEF(SAS)u 文字语言:文字语言:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”)知识要点“边角边”判定方法u几何语言:AB=DE,A=D,AC=AF,ABCD E F 必须是两边“夹角”小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,相信你现在一定有办法了吧!下列条件中,不能证明ABCDEF的是()AABDE,BE,BCEFBABDE,AD,ACDFCBCEF,

3、BE,ACDFDBCEF,CF,ACDF解析:要判断能不能使ABCDEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.C方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的针对训练例1:如果AB=CB,ABD=CBD,那么 ABD 和 CBD 全等吗?分析:ABD CBD.边:角:边:AB=CB(已知),ABD=CBD(已知),?ABCD(SAS)BD=BD(公共边).典例精析证明:在ABD和CBD中,AB=CB(已知),ABD=CBD(已知),ABDCBD(SAS).

4、BD=BD(公共边),变式1:已知:如图,AB=CB,1=2.求证:(1)AD=CD;(2)DB平分ADC.ADBC1243在ABD与CBD中,证明:ABDCBD(SAS),AB=CB(已知),1=2(已知),BD=BD(公共边),AD=CD,3=4,DB平分ADC.ABCD变式2:已知:AD=CD,DB平分ADC,求证:A=C.12在ABD与CBD中,证明:ABDCBD(SAS),AD=CD(已知),1=2(已证),BD=BD(公共边),A=C.DB平分ADC,1=2.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CDCA

5、,连接BC并延长到点E,使CECB连接DE,那么量出DE的长就是A、B的距离,为什么?CAEDB证明:在ABC 和DEC中,ABC DEC(SAS),),AB=DE,(全等三角形的对应边相等).AC=DC(已知),),ACB=DCE(对顶角相等),),CB=EC(已知),证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.归纳已知:如图,AB=DB,CB=EB,12,求证:A=D.证明:12(已知),1+DBC2+DBC(等式的性质),即ABCDBE.在ABC和DBE中,ABDB(已知),ABCDBE(已证),CBEB(已知),ABCDBE(SAS).A=D(全等三角

6、形的对应角相等).1A2CBDE想一想:如图,把一长一短的两根木棍的一端固定在一起,摆出ABC.固定住长木棍,转动短木棍,得到ABD.这个实验说明了什么?B A CDABC和ABD满足AB=AB,AC=AD,B=B,但ABC与ABD不全等.探究活探究活动2:SSA能否判定两个三角形全等画一画:画ABC 和DEF,使B=E=30,AB=DE=5 cm,AC=DF=3 cm 观察所得的两个三角形是否全等?ABMCDABCABD 有两边和其中一边的对角分别相等的两个三角形不一定全等.结论当堂练习当堂练习1.在下列图中找出全等三角形进行连线.308cm9cm308cm8cm8cm5cm308cm5cm

7、308cm5cm8cm5cm308cm9cm308cm8cm2.2.如图如图,ABAB=DBDB,BCBC=BEBE,欲证欲证 ABEABEDBCDBC,则需要增加的条件则需要增加的条件是是 ()()A.A.A A D D B.B.E E C C C.C.A A=C C D.D.ABDABD EBCEBC D3.如图,点E、F在AC上,AD/BC,AD=CB,AE=CF.求证:AFDCEB.FABDCE证明:AD/BC,A=C,AE=CF,在AFD和和CEB中,AD=CB A=CAF=CE AFDCEB(SAS).AE+EF=CF+EF,即 AF=CE.(已知),),(已证),),(已证),)

8、,已知:如图,AB=AC,BD=CD,E为AD上一点,求证:BE=CE.变式变式1证明:BAD=CAD,在ABD和ACD中,AB=AC BD=CDAD=AD(已知),(公共边),(已知),BE=CE.在ABE和ACE中,AB=AC BAD=CADAE=AE(已知),(公共边),(已证),ABDACD(SSS).ABEACE(SAS).5.如图,已知CA=CB,AD=BD,M,N分别是CA,CB的中点,求证:DM=DN.在ABD与CBD中证明:CA=CB(已知)AD=BD(已知)CD=CD(公共边)ACDBCD(SSS)能力提升连接CD,如图所示;A=B又M,N分别是CA,CB的中点,AM=BN

9、在AMD与BND中AM=BN(已证)A=B(已证)AD=BD(已知)AMDBND(SAS)DM=DN.全等三角形与其他图形的综合n n如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AECG;(2)AECG.证明:证明:(1)四边形四边形ABCD、DEFG都是正方形,都是正方形,ADADCD,GDGDED.ADG=90ADG=90CDGCDGADE.在在ADE和和CDG中,中,AD=CDAD=CDCDGCDGADEADE.DG=DE DG=DE ADECDG(SAS),AECG;如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AECG;(2)AECG

10、.(2)(2)设设AEAE与与DGDG相交于相交于M M,AEAE与与CGCG相交于相交于N N,在在GMNGMN和和DMEDME中,中,由由(1)(1)得得CGDCGDAEDAED又又GMNGMNDMEDME,DEMDEMDMEDME9090CGDCGDGMNGMN9090GNMGNM9090,AEAECGCG.MN课堂小结课堂小结 边角边内容有两边及夹角对应相等的两个三角形全等(简写成“SAS”)应用为证明线段和角相等提供了新的证法注意1.已知两边,必须找“夹角”2.已知一角和这角的一夹边,必须找这角的另一夹边 寻找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、做辅助线(构造公共边等)寻找对应相等的角:公共角、对顶角、角平分线平分角、直角或垂直(90)、平行线性质、通过计算(同加或同减)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服