1、12.2三角形全等的判定第十二章 全等三角形导入新课讲授新课当堂练习课堂小结 第第2 2课时课时 “边边角角边边”情境引入学习目标1探索并正确理解三角形全等的判定方法“SAS”.(重点)2会用“SAS”判定方法证明两个三角形全等及进行简单的应用(重点)3.了解“SSA”不能作为两个三角形全等的条件(难点)小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,请你帮助小伟想一个办法,并说明你的理由 尺规作图画出一个ABC,使ABAB,ACAC,AA(即使两边和它们的夹角对应相等).把画好的ABC剪下,放到ABC上,它们全等吗?ABC探究活探究活动1:SAS能否判定能否判定的两个三
2、的两个三角形全等角形全等ABCA DEB C 作法:(1)画DAE=A;(2)在射线AD上截取AB=AB,在射线AE上截取AC=AC;(3)连接BC.在ABC 和 DEF中,ABC DEF(SAS)u 文字语言:文字语言:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”)知识要点“边角边”判定方法u几何语言:AB=DE,A=D,AC=AF,ABCD E F 必须是两边“夹角”小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,相信你现在一定有办法了吧!下列条件中,不能证明ABCDEF的是()AABDE,BE,BCEFBABDE,AD,ACDFCBCEF,
3、BE,ACDFDBCEF,CF,ACDF解析:要判断能不能使ABCDEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.C方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的针对训练例1:如果AB=CB,ABD=CBD,那么 ABD 和 CBD 全等吗?分析:ABD CBD.边:角:边:AB=CB(已知),ABD=CBD(已知),?ABCD(SAS)BD=BD(公共边).典例精析证明:在ABD和CBD中,AB=CB(已知),ABD=CBD(已知),ABDCBD(SAS).
4、BD=BD(公共边),变式1:已知:如图,AB=CB,1=2.求证:(1)AD=CD;(2)DB平分ADC.ADBC1243在ABD与CBD中,证明:ABDCBD(SAS),AB=CB(已知),1=2(已知),BD=BD(公共边),AD=CD,3=4,DB平分ADC.ABCD变式2:已知:AD=CD,DB平分ADC,求证:A=C.12在ABD与CBD中,证明:ABDCBD(SAS),AD=CD(已知),1=2(已证),BD=BD(公共边),A=C.DB平分ADC,1=2.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CDCA
5、,连接BC并延长到点E,使CECB连接DE,那么量出DE的长就是A、B的距离,为什么?CAEDB证明:在ABC 和DEC中,ABC DEC(SAS),),AB=DE,(全等三角形的对应边相等).AC=DC(已知),),ACB=DCE(对顶角相等),),CB=EC(已知),证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.归纳已知:如图,AB=DB,CB=EB,12,求证:A=D.证明:12(已知),1+DBC2+DBC(等式的性质),即ABCDBE.在ABC和DBE中,ABDB(已知),ABCDBE(已证),CBEB(已知),ABCDBE(SAS).A=D(全等三角
6、形的对应角相等).1A2CBDE想一想:如图,把一长一短的两根木棍的一端固定在一起,摆出ABC.固定住长木棍,转动短木棍,得到ABD.这个实验说明了什么?B A CDABC和ABD满足AB=AB,AC=AD,B=B,但ABC与ABD不全等.探究活探究活动2:SSA能否判定两个三角形全等画一画:画ABC 和DEF,使B=E=30,AB=DE=5 cm,AC=DF=3 cm 观察所得的两个三角形是否全等?ABMCDABCABD 有两边和其中一边的对角分别相等的两个三角形不一定全等.结论当堂练习当堂练习1.在下列图中找出全等三角形进行连线.308cm9cm308cm8cm8cm5cm308cm5cm
7、308cm5cm8cm5cm308cm9cm308cm8cm2.2.如图如图,ABAB=DBDB,BCBC=BEBE,欲证欲证 ABEABEDBCDBC,则需要增加的条件则需要增加的条件是是 ()()A.A.A A D D B.B.E E C C C.C.A A=C C D.D.ABDABD EBCEBC D3.如图,点E、F在AC上,AD/BC,AD=CB,AE=CF.求证:AFDCEB.FABDCE证明:AD/BC,A=C,AE=CF,在AFD和和CEB中,AD=CB A=CAF=CE AFDCEB(SAS).AE+EF=CF+EF,即 AF=CE.(已知),),(已证),),(已证),)
8、,已知:如图,AB=AC,BD=CD,E为AD上一点,求证:BE=CE.变式变式1证明:BAD=CAD,在ABD和ACD中,AB=AC BD=CDAD=AD(已知),(公共边),(已知),BE=CE.在ABE和ACE中,AB=AC BAD=CADAE=AE(已知),(公共边),(已证),ABDACD(SSS).ABEACE(SAS).5.如图,已知CA=CB,AD=BD,M,N分别是CA,CB的中点,求证:DM=DN.在ABD与CBD中证明:CA=CB(已知)AD=BD(已知)CD=CD(公共边)ACDBCD(SSS)能力提升连接CD,如图所示;A=B又M,N分别是CA,CB的中点,AM=BN
9、在AMD与BND中AM=BN(已证)A=B(已证)AD=BD(已知)AMDBND(SAS)DM=DN.全等三角形与其他图形的综合n n如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AECG;(2)AECG.证明:证明:(1)四边形四边形ABCD、DEFG都是正方形,都是正方形,ADADCD,GDGDED.ADG=90ADG=90CDGCDGADE.在在ADE和和CDG中,中,AD=CDAD=CDCDGCDGADEADE.DG=DE DG=DE ADECDG(SAS),AECG;如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AECG;(2)AECG
10、.(2)(2)设设AEAE与与DGDG相交于相交于M M,AEAE与与CGCG相交于相交于N N,在在GMNGMN和和DMEDME中,中,由由(1)(1)得得CGDCGDAEDAED又又GMNGMNDMEDME,DEMDEMDMEDME9090CGDCGDGMNGMN9090GNMGNM9090,AEAECGCG.MN课堂小结课堂小结 边角边内容有两边及夹角对应相等的两个三角形全等(简写成“SAS”)应用为证明线段和角相等提供了新的证法注意1.已知两边,必须找“夹角”2.已知一角和这角的一夹边,必须找这角的另一夹边 寻找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、做辅助线(构造公共边等)寻找对应相等的角:公共角、对顶角、角平分线平分角、直角或垂直(90)、平行线性质、通过计算(同加或同减)