ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:296KB ,
资源ID:1435719      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1435719.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高一函数单调性教案.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高一函数单调性教案.doc

1、 2.2.1 函数的单调性一、教学目标 1、通过对函数概念的认识,了解函数的单调性、单调区间的概念 2、使学生能用自己的语言来表述函数单调性的概念,并能根据函数的图象指出单调性,写出单调区间 3、运用函数的单调性定义来证明一些简单函数的单调性二、课型:新课程三、课时:(略)四、教学工具与教学方法 使用多媒体辅助教学工具;采用自主学习、合作探究的教学方法。五、教学重点 函数单调性的概念六、教学难点 利用函数单调性的定义证明具体函数的单调性七、教学过程(一)知识导入144924 第2.1.1节开头的第三问题中,气温是关于时间的函数,记。观察这个气温变化图(如图所示),问:(1)从图中你能得出什么信

2、息? (2)说出在哪些时段内是逐渐升高的或下降的?(3)怎样用数字语言刻画上述时段内“随时间的增加气温逐渐升高”这一特征?讨论并与观察下例图象: -21 -1引出:什么是函数的单调性?单调区间?(二) 定义 设的定义域为A,区间。 如果对于区间内的任意两个值,当时,都有 那么就说在区间上是单调增函数,称为的单调增区间 若对于区间内的任意两个值,当时,都有 那么就说在区间上是单调减函数,称为的单调减区间 如果在区间上是单调增函数或单调减函数,那么就说函数在区间上具有单调性;单调增区间和单调减区间统称为单调区间 (三) 例题讲解 例1:画出下列函数图象,并写出单调区间: (1) (2)-11-11

3、xy(2)2oxy(1)解:(1)函数图象如图(1)所示,单调曾区间为,单调减区间为 (2)函数图象如图(2)所示,和是两个单调区间 注:先让学生练习,然后再讲解例2:求证:函数在区间上是单调曾函数 证:设为区间上的任意两个值,且,则 因为 所以 即 故在区间上是单调曾函数插入: 回到本节课刚开始讨论的图象,我们可以看出14时的气温为全天的最高气温,它表示024时,气温于14时达到最大值。从中可以看出,图象在这一点的位置最高。由此可以定义函数的最大值和最小值: 设的定义域为A 如果存在,使得对于任意的,都有 那么称为 的最大值,记为 如果存在,使得对于任意的,都有 那么称为 的最小值,记为例3

4、:求下列函数的最小值 解:(1)因为 当且尽当时 所以 函数值取得最小值-1,即 (2)因为对于任意实数,都有,且当时-4-1.5-2-133567xy 所以函数取得最小值,即例4:如图为函数的图象,指出它的最大值、最小值及单调区间。 注:先让学生自行练习 解:观察图象知,图象上最高点是(3,3),最低点是(-1.5,-2)。所以 单调增区间为;单调减区间为练习题: 习题(让学生先练习,然后再讲解)八、小结学习了函数的单调性、单调区间的概念,函数的最大值与最小值,以及简单的应用九、作业 习题2、3、4十、板书设计黑板黑板上引入(1) 函数的单调性一、定义二、例题(2) 在书写时,定义部分无论如何都不能擦去,例题部分当讲完题后不够写时可以擦去进入下一题,当要求学生上黑板做题时,擦去例题部分就可以了。 注意:必须保持黑板上书写整洁、清晰

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服