ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.55MB ,
资源ID:1368055      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1368055.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高等数学基础期末复习资料.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学基础期末复习资料.doc

1、 高等数学基础课程期末考试复习资料册一、 单项选择题1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.A.y=x B.x轴 C.y轴 D.坐标原点2.函数在x=0处连续,则k=(C).A.1 B.5 D.03.下列等式中正确的是(C).4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).5.下列无穷限积分收敛的是(D).6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称. A.y=x B.x轴 C.y轴 D.坐标原点7.当时,下列变量中( A)是无穷大量. 8.设f (x)在点x=1处可导,则 =(B). 9.函数在区

2、间(2,4)内满足(A).A.先单调下降再单调上升 B.单调上升C.先单调上升再单调下降 D.单调下降10.=(B).A.0 B. C.2 D. /2 11.下列各函数对中,(B)中的两个函数相等.12.当,变量(C)是无穷小量.13.设f(x)在点x=0处可导,则=(A).14.若f(x)的一个原函数是,则=(D).15.下列无穷限积分收敛的是(C).16.设函数f(x)的定义域为,则函数的图形关于(A)对称.A.坐标原点 B.x轴 C.y轴 D. y=x 17.当时,变量(D)是无穷小量. 18.设f(x)在x。可导,则=(C).19.若则=(B). 20. =(A). 21.下列各函数对

3、中,(B)中的两个函数相等. 22.当k=(C)时,在点x=0处连续.A. -1 B. 0c.1 D.223. 函数在区间(2,4)内满足(B).A. 先单调下降再单调上升 B.单调上升C. 先单调上升再单调下降 D.单调下降24 若,则= (D).A. sinx十C B. -sinx十cC. -cosx+c D. cosx 十C25. 下列无穷积分收敛的是(A). 26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.A.y=x B.x轴C.y轴 D.坐标原点27. 当x0时,变量(C)是无穷小量.28. 函数在区间(-5,5) 内满足(B).A. 单调下降 B

4、.先单调下降再单调上升C先单调上升再单调下降 D.单调上升29. 下列等式成立的是(A).30.下列积分计算正确的是(D).31. 函数 的定义域是(D).32.若函数,在x=0处连续,则k=(B).A .1 B.2 C.-1 D.33.下列函数中,在内是单调减少的函数是(A).34.若f(x) 的一个原函数是 ,则=(C).A. cosx +c B. - sinx十CC. sinx十C D. - cosx十C35. 下列无穷限积分收敛的是(C).36.下列各函数对中,(C)中的两个函数相等.37. 37.在下列指定的变化过程中, (A)是无穷小量.38. 设f(x)在可导,则= (C).39

5、. =(A).40. 下列无穷限积分收敛的是(C).41.下列函数中为奇函数的是(A).42. 当x0时,变量(C)无穷小量.43.下列等式中正确的是(B).44 若f(x)的一个原函数是,则=(D).45.=(A).46.函数的图形关于(D)对称.A.y=x B.x轴c.y轴 D.坐标原点47. 在下列指定的变化过程中,(A)是元穷小量.48.函数在区间(-5,5)内满足(C).A. 先单调上升再单调下降 B.单调下降C. 先单调下降再单调上升 D.单调上升49. 若f(x) 的一个原函数是,则 = (B).50.下列无穷限积分收敛的是(B).二、 填空题1. 函数 的定义域是 (3,5)

6、.2.已知,当 时,f(x)为无穷小量.3.曲线f(x)=sinx在处的切线斜率是 -1 .4.函数的单调减少区间是 .5.= 0 .6.函数的定义域是 (2,6) .7.函数的间断点是 x=0 .8.函数的单调减少区间是 .9.函数的驻点是 x= - 2 .10.无穷积分当时p 1 时是收敛的.11.若,则f(x)= .12.函数的间断点是 x=0 .13.已知,则= 0 .14.函数的单调减少区间是 .15.= . 16.函数 的定义域是 (-5,2) .17. .18.曲线在点(1,3)处的切线斜率是 2 . 19.函数的单调增加区间是 .20.若则f(x)= .21.若则f(x)= .

7、22 已知 当 时,f(x)为无穷小量.23. 曲线在(l ,2) 处的切线斜率是 .24. = .25 若,则= .26.函数的定义域.27. 函数的间断点是 x=0 .28. 曲线在x=2处的切线斜率是 .29. 函数的单调增加区间是 .30.= .31. 函数,则f(x)= .32. 函数 的间断点是 x=3 .33. 已知则 = 0 .34. 函数的单调减少区间 .35. 若f(x) 的一个原函数为lnx,则 f(x) = .36. 若函数,则f(O)= -3 .37.若函数在x=O处连续,则k=e .38.曲线在(2,2)处的切线斜率是 .39.函数 的单调增加区间是 .40.= .

8、41. 函数的定义域是(-2,2) .42. 函数的间断点是 x=3 .43. 曲线 在(0,2)处的切线斜是 1 .44. 函数的单调增加区间是 .45. 若,则f(x)= .46.函数的定义域是 .47.若函数,在x=O处连续,则k= e .48. 已知f(x) =ln2x ,则= 0 .49. 函数的单调增加区间是 .50. ,则= .三、计算题1.计算极限.解: 2.解:由导数四则运算法则和复合函数求导法则得3.计算不定积分.解:由换元积分法得4.计算定积分.解:由分部积分法得5. 计算极限.解:6. 设,求.解:由导数四则运算法则和复合函数求导法则得7. 计算不定积分.解:由换元积分

9、法得8. 计算定积分.解:由分部积分法得9.计算极限 解:10. 设,求dy.解:由微分四则运算法则和一阶微分形式不变性得11. 计算不定积分.解:由换元积分法得12.计算定积分.解:由分部积分法得13.计算极限.解:14. 设,求.解:15.计算不定积分解:由换元积分法得16.计算定定积分.解:由分部积分法得17.计算极限.解:18.设求dy.解:19.计算不定积分.解:由换元积分法得20.计算定积分.解:由分部积分法得21.计算极限.22.设求 .解:由导数四则运算法则和导数基本公式得 23.计算不定积分.解:由换元积分法得24.计算定积分.解:由分部积分法得25.计算极限.26.设 ,求

10、 .解: 由导数四则运算法则和复合函数求导法则得 27.计算不定积分.解:由换元积分法得28.计算定积分.解:由分部积分法得29. 计算极限.30.设,求.解:由导数运算法则和导数基本公式得31.计算不定积分.解:由换元积分法得32. 计算定积分.解:由分部积分法得33. 计算极限.34设,求dy.解: 由微分运算法则和微分基本公式得35.计算不定积分.解:由换元积分法得36.计算定积分.解:由分部积分法得37. 计算极限38.设,求dy.解: 由微分运算法则和微分基本公式得39.计算不定积分.解:由换元积分法得40. 计算定积分.解:由分部积分法得四、 应用题1.求曲线上的点,使其到点A(0

11、,2)的距离最短.解:曲线上的点到点A(0,2)的距离公式为d与在同一点取到最大值,为计算方便求最大值点,将代人得 求导得令得,并由此解出 ,即曲线 上的点 和点 到点A(0,2)的距离最短。2.欲做一个底为正方形,容积为V立方米的长方体开口容器,怎样做法用料最省?解:设底边的边长为x,高为y,容器表面积为S,由已知,令,解得是唯一驻点,易知是函数的最小值点,此时有,所以当时用料最省. 3.圆柱体上底的中心到下底的边沿的距离为2,问当底半径与高分到为多少时,圆柱体的体积最大?解:如图所示,圆柱体高h与底半径r满足 圆柱体的体积公式为 将代人得 求导得 令 得 并由此解出 即当底半径 ,高 时,

12、圆柱体的体积最大.图34.某制罐厂要生产一种体积为V的无盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为r,高为h,则其表面积为 由S=0,得唯一驻点,由实际问题可知,当时可使用料最省,此时,即当容器的底半径与高均为时,用料最省.5.某制罐厂要生产一种体积为V的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为r,高为h,则其表面积为由S=0,得唯一驻点,由实际问题可知,当 时可使用料最省,此时 ,即当容器的底半径与高分别为用料最省.6.欲做一个底为正方形,容积为立方米的长方体开口容器,怎样做法用料最省? 解:设底边的边长为x,高为h,用材料为y

13、, 由已知 令解得x=4是唯一驻点,易知x=4是函数的最小值点,此时有=2,所以当x=4,h=2时用料最省. 7.某制罐厂要生产一种体积为V 的有盖圆柱形容器, 问容器的底半径与高各为多少时用料最省?解:设容器的底半径为r,高为h,则其表面积为由S=0,得唯一驻点,此时,由实际问题可知,当底半径 和 高时可使用料最省.8.在抛物线上求一点,使其与x轴上的点A(3,0)的距离最短.解:设所求点P(x,y)川,则x,y满足. 点P到点A的臣离之平方为令L =2(x-3)十4=0,解得x=l是唯一驻点,易知x=l是函数的最小值点,当x=l时,y=2或y=-2,所以满足条件的有两个点(1,2)和(1,-2). 9.欲做一个底为正方形,容积为长方形开口容器,怎样做法用料最省? 解: 设底边的边长为x, 高为h, 容器表面积为y, 由已知令.解得x=5是唯一驻点,易知x=5是函数的最小值点,此时有所以当 x=5cm,h=2. 5cm时用料最省. 10. 欲做一个底为正方形,容积为的长方体开口容器,怎样做法可使用料最省?解: 设底边的边长为x,高为h,用材料为y, 由已知令,解得x=4是唯一驻点,易知x=4是函数的极小值点,此时有所以当x=4(cm) , h= 2(cm)时用料最省.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服