ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:578KB ,
资源ID:1365715      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1365715.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高二数学-椭圆-双曲线练习题.doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学-椭圆-双曲线练习题.doc

1、高二数学 椭圆 双曲线练习题 一、 选择题: 1、双曲线x2-ay2=1的焦点坐标是( ) A.(, 0) , (-, 0) B.(, 0), (-, 0) C.(-, 0),(, 0) D.(-, 0), (, 0) 2、设双曲线的焦点在x轴上,两条渐近线为,则该双曲线的离心率为( ) A.5 B./2 C. D.5/4 3.椭圆的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则= ( ) A./2 B. C.4 了

2、D.7/2 4.过椭圆左焦点且倾斜角为60°的直线交椭圆于两点,若,则椭圆的离心率等于 ( ) 5.已知椭圆和双曲线=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x=± B.y=± C.x=± D.y=± 6.设F1和F2为双曲线y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是( ) A.1 B. C.2 D. 7.已知F1、F2是两个定点,点P是以F1和F2为公共焦点的

3、椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是椭圆和双曲线的离心率,则有( ) A. B. C. D. 8.已知方程+=1表示焦点在y轴上的椭圆,则m的取值范围是( ) A.m<2 B.10,m>b>0)的离心率互为倒数,那么以a、b、m为边长的三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角或钝角三角形 10.椭圆上有n个不同的点: P1, P2, …, Pn, 椭圆的右焦点为F. 数列{|PnF|}是公差

4、大于的等差数列, 则n的最大值是( ) A.198 B.199 C.200 D.201 二、 填空题: 11.对于曲线C∶=1,给出下面四个命题:①由线C不可能表示椭圆;②当1<k<4时,曲线C表示椭圆;③若曲线C表示双曲线,则k<1或k>4;④若曲线C表示焦点在x轴上的椭圆,则1<k< 其中所有正确命题的序号为_______ ______ 12.设圆过双曲线=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__ 13.双曲线=1的两焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离____ 14.

5、若A(1,1),又F1是5x2+9y2=45椭圆的左焦点,点P是椭圆的动点,则|PA|+|P F1|的最小值_______ 15、已知B(-5,0),C(5,0)是△ABC的两个顶点,且sinB-sinC=sinA,则顶点A的轨迹方程是 三、 解答题: 16、设椭圆方程为=1,求点M(0,1)的直线l交椭圆于点A、B,O为坐标原点,点P满足,当l绕点M旋转时,求动点P的轨迹方程. 图 17、已知F1、F2为双曲线(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求双曲线的渐近线方程.

6、 18、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围; 19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。 (1) 求双曲线C的方程;(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。 20、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程; (2)已知直线交双曲线于不同的点C,D且C,D都在以B为

7、圆心的圆上,求k的值. 21、设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明. 参考答

8、案: 1、双曲线x2-ay2=1的焦点坐标是( C ) A.(, 0) , (-, 0) B.(, 0), (-, 0) C.(-, 0),(, 0) D.(-, 0), (, 0) 2、设双曲线的焦点在x轴上,两条渐近线为,则该双曲线的离心率e( B ) A.5 B./2 C. D.5/4 3.椭圆的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则= ( D ) A./2 B. C.4 D.7/2 4.过椭圆左焦点且倾斜角

9、为60°的直线交椭圆于两点,若,则椭圆的离心率等于 (D ) 5.已知椭圆和双曲线=1有公共的焦点,那么双曲线的渐近线方程是( D )A.x=± B.y=± C.x=± D.y=± 解:由双曲线方程判断出公共焦点在x轴上,∴椭圆焦点(,0),双曲线焦点(,0),∴3m2-5n2=2m2+3n2∴m2=8n2又∵双曲线渐近线为y=±·x∴代入m2=8n2,|m|=2|n|,得y=±x. 6.设F1和F2为双曲线y2=1的两个焦点,点P在双曲线上,且满足∠F1PF

10、2=90°,则△F1PF2的面积是(A )A.1 B. C.2 D. 解:由双曲线方程知|F1F2|=2,且双曲线是对称图形,假设P(x,),由已知F1P⊥F2 P,有,即, 7.已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是椭圆和双曲线的离心率,则有( D ) A. B. C. D. 8.已知方程+=1表示焦点在y轴上的椭圆,则m的取值范围是 ( D ) A.m<2 B.10,m>

11、b>0)的离心率互为倒数,那么以a、b、m为边长的三角形是( B )A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角或钝角三角形 10.椭圆上有n个不同的点: P1, P2, …, Pn, 椭圆的右焦点为F. 数列{|PnF|}是公差大于的等差数列, 则n的最大值是( C ) A.198 B.199 C.200 D.201 二、填空题: 11.对于曲线C∶=1,给出下面四个命题:①由线C不可能表示椭圆;②当1<k<4时,曲线C表示椭圆;③若曲线C表示双曲线,则k<1或k>4;④若曲线C表示焦点在x轴上的椭圆,则1<k< 其中所有

12、正确命题的序号为_______ ______③④; 12.设圆过双曲线=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是______16/3; 解:如图8—15所示,设圆心P(x0,y0),则|x0|==4,代入=1,得y02=,∴|OP|=. 13.双曲线=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为 .16/5; 解:设|PF1|=m,|PF2|=n(m>n),a=3、b=4、c=5,∴m-n=6 m2+n2=4c2,m2+n2-(m-n)2=m2+n2-(m2+n2-

13、2mn)=2mn=4×25-36=64,mn=32. 又利用等面积法可得:2c·y=mn,∴y=16/5. 14.若A点坐标为(1,1),F1是5x2+9y2=45椭圆的左焦点,点P是椭圆的动点,则|PA|+|P F1|的最小值是_______ ___.; 15、已知B(-5,0),C(5,0)是△ABC的两个顶点,且sinB-sinC=sinA,则顶点A的轨迹方程是 三、解答题: 16、设椭圆方程为=1,求点M(0,1)的直线l交椭圆于点A、B,O为坐标原点,点P满足,当l绕点M旋转时,求动点P的轨迹方程. 图 解:设P(x,y)是所求轨迹上的任一点,①当斜率存在时,直

14、线l的方程为y=kx+1,A(x1,y1),B(x2,y2),联立并消元得:(4+k2)x2+2kx-3=0, x1+x2=-y1+y2=,由 得:(x,y)=(x1+x2,y1+y2),即: 消去k得:4x2+y2-y=0当斜率不存在时,AB的中点为坐标原点,也适合方程 所以动点P的轨迹方程为:4x2+y2-y= 0. 17、已知F1、F2为双曲线(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求双曲线的渐近线方程. 解:(1)设F2(c,0)(c>0),P(c,y0),则=1.解得y0=± ∴|PF2|=,在直角三角形PF2F1中

15、∠PF1F2=30°解法一:|F1F2|=|PF2|,即2c=,将c2=a2+b2代入,解得b2=2a2 解法二:|PF1|=2|PF2|,由双曲线定义可知|PF1|-|PF2|=2a,得|PF2|=2a. ∵|PF2|=,∴2a=,即b2=2a2,∴ 故所求双曲线的渐近线方程为y=±x. 18、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围; 解:(1)∵,∴.∵是共线向量,∴,∴b=c,故.(2)设 当且仅当时

16、cosθ=0,∴θ. 19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1) 求双曲线C的方程;(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。 解:(Ⅰ)设双曲线方程为 由已知得故双曲线C的方程为 (Ⅱ)将 由直线l与双曲线交于不同的两点得 即 ① 设,则 而 于是 ② 由①、②得 故k的取值范围为 20、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程; (2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值. 解:∵(1)原点到直线AB:的距离.

17、故所求双曲线方程为 (2)把中消去y,整理得 . 设的中点是,则 故所求k=±. 21、设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程; (3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明. 解:(1)椭圆C的焦点在x轴

18、上,由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2.又点A(1,)在椭圆上,因此=1得b2=3,于是c2=1.所以椭圆C的方程为=1,焦点F1(-1,0),F2(1,0)(2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足: , 即x1=2x+1,y1=2y. 因此=1.即为所求的轨迹方程.(3)类似的性质为:若M、N是双曲线:=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值. 设点M的坐标为(m,n),则点N的坐标为(-m,-n),其中=1.又设点P的坐标为(x,y),由,得kPM·kPN=,将m2-b2代入得kPM·kPN=.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服