ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:516KB ,
资源ID:1365672      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1365672.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高一数学必修一函数的定义域和值域.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高一数学必修一函数的定义域和值域.doc

1、课 题函数的概念和图像授课日期及时段教学目的1. 理解函数及其定义域、值域的概念,并能求函数的定义域、值域2. 能用描点法画函数的图像3. 了解函数的表示方法,重点掌握函数的解析法4. 了解分段函数的概念,掌握分段函数的解析式表达形式和图像的画法5. 理解函数的单调性,掌握判断函数单调性和求函数最值的方法6. 能画单调函数的图像并根据图像判断函数的增减性,求函数的最值7. 理解掌握判断函数的奇偶性的方法了解映射的定义,明确函数与映射的异同之处教学内容1. 函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别2. 思考:对于不同的函数如:的定义域如何确定3. 通常表示函数的方法

2、有: 4. 的定义域为。 函数是增函数, 函数是减函数, 函数是奇函数, 函数是偶函数。讲授新课:一、 函数的判断例1.下列对应是函数的是注:检验函数的方法(对于定义域内每一值值域内是否存在唯一的值与它对应) 下列函数中,表示同一个函数的是:( )注:定义域和对应法则必须都相同时,函数是同一函数A. B.C. D.练习:1. 设有函数组: 其中表示同一函数的是 。二:函数的定义域注:确定函数定义域的主要方法(1) 若为整式,则定义域为R.(2) 若是分式,则其定义域是分母不为0的实数集合(3) 若是偶次根式,则其定义域是使根号下式子不小于0的实数的集合;(4) 若是由几部分组成的,其定义域是使

3、各部分都有意义的实数的集合;(5) 实际问题中,确定定义域要考虑实际问题例:1.求下列函数的定义域:(1) (2)(3) (4)(5) (6)t是时间,距离2. 已知函数的定义域是-3,0,求函数的定义域。3. 若函数的定义域是R,求的取值范围。练习:1. 求下列函数的定义域:(1) ; (2)(3) ; (4)2. 已知的定义域为,求函数的定义域。三、 函数值和函数的值域例1、求下列函数的值域:(观察法)(1) (2)例2.求函数的值域(反解法)例3.求函数的值域(配方换元法)例4.求函数的值域(不等式法)例5.画出函数的图像,并根据其图像写出该函数的值域。(图像法)练习:1. 求下列函数的

4、值域:(1) (2)(3) (4)2. 求下列函数的值域:(1) (2) (3)四、 函数解析式:例1、已知,求的解析式。(换元法)例2.设二次函数的最小值等于4,且,求的解析式。(待定系数法)例3.甲同学家到乙同学家的途中有一个公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家。如图,表示甲从出发到乙家为止经过的路程与时间的关系。试写出的函数表达式。练习:1. 已知,求。2、 已知是一次函数,且,求的解析式。3、设是R上的函数,且满足,并且对任意实数,有,求的表达式。4、求函数的值域。五、 单调性:例1.证明:在上是减函数。(定义法)2.证明:函数在上是减函数例2.

5、画出函数的图像,并由图像写出函数的单调区间。3、 复合函数注:定义域相同时:增增增减减减增增增减减增增减减减增减例:已知函数,试求的单调区间。练习:1. 确定函数的单调性。2.试判断函数(且)在区间上的单调性。3. 已知在区间上的最小值为-3,求实数的值。单调性的应用例:1.已知函数对任意的,总有,且当时,(1) 求证:在R上是减函数;(2) 求在上的最大值、最小值。六、 奇偶性例.判断函数奇偶性:(1) ;(2) ;(3)(4)练习:判断函数的奇偶性:(1) ;(2) ;(3) ;(4) ;(5)例.奇偶性的应用1.已知是奇函数,且。(1) 求实数的值;(2) 判断函数在上的单调性,并加以证

6、明。2. 已知函数,则当为何值时,是奇函数?练习:1. 已知是奇函数,且时,求时,求的解析式。2.已知定义域为R的奇函数,求证:若在区间上,有最大值M,那么在区间上必有最小值-M.函数的值域姓名_ 班级_ 学号_ 日期_ 成绩_1、函数y=-x2-4x+1,x-3,3的值域是_2、函数y=x2-x(-1x4,xZ)的值域是_3、函数y=3x-4的值域为-10,5,则其定义域是_4、设函数的定义域为R,则它的值域为_5、函数的值域是_6、已知函数则f(1)=_,f(-1)=_,ff(-1)=_7、已知函数(1)求ff(1)的值; (2)求f(x)的值域;(3)已知f(x)=-10,求x的值。8、分别在下列范围内求函数f(x)=x2-2x-3的最值(1)0x2; (2)0x4; (3)2x3.参考答案1、-20,5 2、2,0,6,12 3、-2,34、(0,1 5、0,-1,-2 6、5,3,217、解:(1)f(1)=-3,ff(1)=f(-3)=2(2)由图象可知,x0时,f(x) -6x0时,f(x)5所以yR8、解:由函数y=f(x)的图象可知,(1)y-4,-3 (2)y-4,5 (3)y-3,0

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服