ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:1.17MB ,
资源ID:1365605      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1365605.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高一数学函数单调性的证明-PPT.ppt)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高一数学函数单调性的证明-PPT.ppt

1、回顾回顾我们初中学过的函数我们初中学过的函数xyOxyOxyO-1例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=xxyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=xxyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;xyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x

2、1f(x1)xyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)xyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)xyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x

3、的增大而减小;的增大而减小;x1f(x1)xyy=xO11例例1 1:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)(-,+)(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的

4、增大而减小。Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。x1f(x1)Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间

5、大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此

6、函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2例例1 1:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1(-,0 0 0,+)0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征数量数量特征特征0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx

7、 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升数量数量特征特征0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升数量数量特征特征y随随x的增大而增大的增大而增大0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升从左至右,图象下降从左至右,

8、图象下降数量数量特征特征y随随x的增大而增大的增大而增大0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升从左至右,图象下降从左至右,图象下降数量数量特征特征y随随x的增大而增大的增大而增大y随随x的增大而减小的增大而减小0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升从左至右,图象下降从左至右,图象下降数量数量

9、特征特征y随随x的增大而增大的增大而增大当当x1x2时,时,f(x1)f(x2)y随随x的增大而减小的增大而减小0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升从左至右,图象下降从左至右,图象下降数量数量特征特征y随随x的增大而增大的增大而增大当当x1x2时,时,f(x1)f(x2)一般地,设函数一般地,设函数y f(x)的定义域为的定义域为I,区间,区间D I 如果对于区间如果对于区间D内的任意两个值内的任意两个值x1、x2,当,当x1x2时,都时,

10、都有有f(x1)f(x2),那么就说,那么就说yf(x)在区间在区间D上是单调增函数,上是单调增函数,D称为称为yf(x)的单调增区间的单调增区间 如果对于区间如果对于区间D D内的任意两个值内的任意两个值x1、x2,当当x1x2时时,都都有有f(x1)f(x2),那么就说那么就说yf(x)在区间在区间D上是单调减函数上是单调减函数,D称为称为yf(x)的单调减区间的单调减区间 若函数若函数yf(x)在区间在区间D上是单调增函数或单调减函数上是单调增函数或单调减函数,那么就说函数那么就说函数yf(x)在区间在区间D上具有单调性上具有单调性单调增区间单调增区间和单调减区间统称为单调区间和单调减区

11、间统称为单调区间 1 1、单调增函数与单调减函数单调增函数与单调减函数区间区间D任意任意当当x1x2时,都时,都有有f(x1)f(x2)2 2、单调性、单调区间、单调性、单调区间证明:函数证明:函数 在在R R上是单调减函数上是单调减函数证:在证:在R R上任意取两个值上任意取两个值 ,且,且 ,即即 在在R R上是单调减函数上是单调减函数取值取值作差变形作差变形定号定号下结论下结论例例2证明:函数证明:函数 在区间在区间(1 1,)上是单调上是单调增增函数函数证:在区间证:在区间(1 1,)上任意取两个值)上任意取两个值 ,且,且 ,在区间(在区间(1 1,)上是)上是单调增函数单调增函数

12、即即 取值取值作差变形作差变形定号定号则则下结论下结论例例3证:在区间(证:在区间(,0 0)上任意取两个值)上任意取两个值 ,且,且 ,即即 证明:函数在区间(证明:函数在区间(,0)上是单调减函数上是单调减函数 在区间(在区间(,0 0)上是单调减函数)上是单调减函数取值取值作差变形作差变形定号定号则则下结论下结论例例4例例5 试判断函数试判断函数y=x2+x 在(在(0,)上)上是增函数还是减函数?并给予证明。是增函数还是减函数?并给予证明。解:函数解:函数y=x2+x 在(在(0,)上是增函数)上是增函数下面给予证明:下面给予证明:设设 x1 1,x2 2 为区间为区间(0,)上的任意

13、两个值,且上的任意两个值,且x1 1 x2 2,则则f(x1)f(x2)=(x12+x1)(x22+x2)=(x12 x22)+(x1 x2)又又 x2 x1 0,所以函数所以函数y=x2+x 在(在(0,)上是增函数)上是增函数=(x1 x2)(x1+x2)+(x1 x2)=(x1 x2)(x1+x2+1)所以所以x1 x2 0,x1+x2+1 0,所以所以f(x1)f(x2)0用定义法证明函数单调性的步骤:用定义法证明函数单调性的步骤:取值;取值;作差变形;作差变形;定号;定号;下结论下结论问题问题 讨论函数讨论函数 的单调性的单调性思考思考xyO11判断函数单调性的方法判断函数单调性的方法:1、图象法、图象法 2、代数论证法、代数论证法证明函数的单调性常用步骤:证明函数的单调性常用步骤:(1)取值取值(2)作差变形作差变形(3)定号定号 (4)下结论下结论小结小结

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服