ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:603.50KB ,
资源ID:1365394      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1365394.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(一次函数中的面积问题.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一次函数中的面积问题.doc

1、 学情分析 基础 ,对于知识不能灵活运用 课 题 一次函数关于面积问题 学习目标与 考点分析 学习目标:1、关于一次函数的面积问题利用面积求解析式 2、利用解析式求面积以及对于动点问题学会熟练的解决 考点分析:1、一次函数的解析式与面积的充分结合 学习重点 重点:1、一次函数与面积的综合结合与运用 2、对于动点问题与一次函数的熟练结合与把握 学习方法 讲练结合 练习巩固 学习内容与过程 一、 本节内容导入 一次函数相关的面积

2、问题 画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。 规则图形 (公式法) 不规则图形 (切割法) 不含参数问题 含参数问题 (用参数表示点坐标,转化成线段) 注意:坐标的正负、线段的非负性。 求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。 二、 典例精讲 一、利用面积求解析式 1、直线与坐标轴围成的三角形的面积是9,则=________. (分类讨论) 由于b值符号不确定,所以图形可能两种情况,引出分类讨论。 2、 已

3、知直线y=x+3的图象与x轴、y轴分别交于A、B两点,直线经过原点,与线段AB交于点C,把,△AOB的面积分为2:l两部分,求直线名的解析式. 由于题目中的哪一部分的面积大,没有交代,引出分类讨论。 A( -3 , 0) B(0 , 3 ) Saob= 9/2 设L: y= kx 所以=1, C1(-1 , y ) ,代入y=x+3 , y = 2 所以C1(-1 , 2 ) 同理:C2(-2 , 1) 3、如图,已知直线PA:与轴交于A,与轴交于Q,另一条直线轴交于B,与直线PA交于P 求: (1)A,B,Q,P四点的坐标(用或表示) (

4、2) 若AB=2,且S四边形PQOB=,求两个函数的解析式. 主要练习用字母表示其它的量,建立方程的思想。 两点间的距离公式: AB=或 AB= AB===2 再根据四边形面积公式建立等式。求解m,n 4、已知直线与轴、轴分别交于点和点,另一条直线 经过点,且把分成两部分 (1)若被分成的两部分面积相等,则和的值 (2)若被分成的两部分面积比为1:5,则和的值 答案:(1)(2)①② 5、已知一次函数的图象与y轴、x轴分别交于点A、B,直线经过OA上的三分之一点D,且交x轴的负半轴于点C,如果,求直线的解析式

5、. 二、利用解析式求面积 1、直线过点A(-1,5)和点且平行于直线,O为坐标原点,求的面积. 2、 如图,所示,一次函数的图像经过,两点,与轴交于 求:(1)一次函数的解析式; (2)的面积 3、已知,直线y=2x+3与直线y=-2x-1. (1) 求两直线交点C的坐标;(2)求△ABC的面积.(3)在直线BC上能否找到点P,使得S△APC=6, 若能,请求出点P的坐标,若不能请说明理由。 4、如图,直线y=-x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x轴交于点C,求△ABC的面积。 B A C O

6、 5、已知直线经过点A(0,6),且平行于直线. (1)求该函数的解析式,并画出它的图象; (2)如果这条直线经过点P(m,2),求m的值; (3)若O为坐标原点,求直线OP解析式; (4)求直线和直线OP与坐标轴所围成的图形的面积。 6、如图,已知直线PA:与轴交于A,与轴交于Q,另一条直线轴交于B,与直线PA交于P 求: (1)A,B,Q,P四点的坐标(用或表示) (2)若AB=2,且S四边形PQOB=,求两个函数的解析式. 三、 关于面积的函数关系 1、已知点A(x,y)在第一象限内,且x+y=10,点B(4,0),△OAB的面积为S. (1)求S与x的

7、函数关系式,直接写出x的取值范围,并画出函数的图像; (2)△OAB的面积为6时,求A点的坐标; 2、如图,正方形ABCD的边长为4,P为CD边上一点(与点D不重合)。设DP=, (1)求的面积关于的函数关系式; (2)写出函数自变量的取值范围; (3)画出这个函数的图象 四、动点问题与一次函数面积 1、如图(1),在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发, 沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止. 若点P、点Q同时出发,点P的速度为1cm/s,点Q的速度为2cm/s,as时点P、点

8、Q 同时改变速度,点P的速度变为bcm/s,点Q的速度变为dcm/s .图(2)是点P出发x秒后△APD的面积S1(cm2)与x(s)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积S2(cm2)与x(s)的函数关系图象. (1)参照图(2),求a、b及图(2)中c的值; (2)求d的值; (3)设点P离开点A的路程为y1(cm),点Q到A还需走的路程为y2(cm), 请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(s)的函数关系式,并求出P、Q 相遇时x的值; (4)当点Q出发_______s时,点P、点Q在运动路线上相距的路程为25cm. 2、如图

9、直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点 C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。 (1)求A、B两点的坐标; (2)求△COM的面积S与M的移动时间t之间的函数关系式; (3)当t何值时△COM≌△AOB,并求此时M点的坐标。 3、如图,直线与x轴、y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。 (1)求的值; (2)若点P(,)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明

10、理由。 4、如图,在平面直角坐标系xOy中,直线与交于点A,两条直线分别与x轴交于点B和点C,点D是直线AC上的一个动点. (1)求点A、B、C的坐标; (2)试求当BD=CD时D点的坐标; (3)如的面积为面积的两倍,则求此时D的坐标. 5. 如图,已知直线与x轴相交于点A,与直线相交于点P. (1)求点P的坐标. (2)请判断的形状并说明理由. F y O A x P E B (3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动

11、t秒时,矩形EBOF与△OPA重叠部分的面积为S.试求 S与t之间的函数关系式. 6.如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边. (1)求直线的解析式; (2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值; (图1) 五、通过面积求参数的值或范围 1、已知,直线y=2x+3与直线y=-2x-1. (1)求两直线交点C的坐标;(2)求△ABC的面积. (3)在直线BC上能

12、否找到点P,使得S△APC=6, 若能,请求出点P的坐标,若不能请说明理由。 2、在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,图形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象 3、如图1,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x+y=8,设△AOB的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)画出图象. (1) (2 4.如图,直线1过A(0,2

13、B(2,0)两点,直线2:过点(-1,0),且把分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S,求S关于m的函数解析式,及自变量m的取值范围。 (08西城二模)如图,函数的图象分别交x轴,y轴于点 N、M,过MN上的两点A、B分别向x 轴作垂线与x轴 交于(x1,0)),(x2,0),(),若. (1) 分别用含x1、x2的代数式表示

14、的面积与的面积 (2) 请判断的面积与的面积的大小关系,并说明理由. 解:设A(),B(),则. (1). .-------------------2分. (2)有.----------------------------------3分. 理由如下: =.---------------------5分. 由题意知,,且. 所以,. 可得 .-----------------------------------6分. 课内练习与训练 1、在直角坐标系中,有以A(-1,-1),B(1

15、-1),C(1,1),D(-1,1)为顶点的正方形,设此正方形在折线y=|x-a|+a上侧部分的面积为S,画出图形并写出S关于a 的函数关系式。 2、在平面直角坐标系中,点A(4,0),点P(x,y)是直线在第一象限的一点. (1)设△OAP的面积为S,用含x的解析式表示S,并写出自变量取值范围. (2)在直线求一点Q,使△OAQ是以OA为底的等腰三角形. (3)若第(2)问变为使△OAQ是等腰三角形,这样的点有几个? 3、已知:直线与直线,它们的交点C的坐标是________,设两直线与轴分别交于A,B,则SΔABC=_______,设两直线与

16、轴交于P,Q,则SΔPCQ=_________. 4、一次函数与正比例函数的图象都经过(2,-1),则这两个函数的图象与轴围成的三角形面积是________. 5、如图,Rt△ABO的顶点A在直线上.AB⊥x轴于B,且S△ABO=,AB:BO=3:1 ,点C在该直线上,且点C的横坐标是3, (1)点A的坐标; (2)求直线AC的解析式; (3)求△AOC的面积. 6.已知直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰,∠BAC=90°,且点P(1,a)为坐标系中的一个动点。 ①求三角形ABC的面积; ②证明不论a取任何实数,三角

17、形BOP的面积是一个常数; ③要使得和的面积相等,求实数a的值。 7.如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边. (1)求直线的解析式; (图1) (2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值; 8.如图1在平面直角坐标系xOy中,直线分别交x轴、y轴于C、A两点.将射线AM绕着点A顺时针旋转45°得到射线AN.点D为AM上的动点,点B为AN上的动点,点C在∠MAN的内部. (1) 求线段AC的长; (2) 当AM∥x轴,且四边形ABCD为梯形时,求△BCD的面积; (3) 求△BCD周长的最小值; (4) 当△BCD的周长取得最小值,且BD=时,△BCD的面积为 . (第(4)问只需填写结论,不要求书写过程) 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服